在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
1 法国巴黎索邦大学、UPMC 巴黎 06 大学、INSERM、CNRS、AP-HP、Pitie´ -Salpétrie` re 医院;2 法国巴黎 ESPCI、PSL 大学、CNRS、朗之万研究所;3 瑞士洛桑联邦理工学院流体力学与不稳定性实验室;4 法国巴黎巴黎精神病学和神经科学研究所、圣安妮医院、笛卡尔大学、INSERM U1266;5 挪威特隆赫姆挪威科技大学医学院 Kavli 系统神经科学研究所、神经计算中心; 6 挪威特隆赫姆挪威科技大学医学院临床与分子医学系
在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS Claire Wyart 1† , Martin Carbo-Tano 1 , Yasmine Cantaut-Belarif 1 , Adeline Orts-Del'Immagine 1 and Urs L. Böhm 2 1 Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225巴黎,索邦大学,法国巴黎。2卓越神经集群,柏林柏林Charité大学,德国。†电子邮件:claire.wyart@icm-institute.org摘要|脑脊液(CSF)是一种复杂的解决方案,可在CNS周围循环
摘要:脑脊液(CSF)是发现神经系统疾病生物标志物的重要基质。然而,CSF中蛋白质浓度的高动态范围阻碍了不靶向的质谱法检测最少丰富的蛋白质生物标志物。因此,对大脑内部的分泌过程有更深入的了解是有益的。在这里,我们旨在探讨脑蛋白是否以及如何预测CSF的分泌。通过将策划的CSF蛋白质组和人蛋白质图集的脑升高蛋白质组相结合,将脑蛋白分类为CSF或非CSF分泌。机器学习模型接受了一系列基于序列的特征的培训,以区分CSF和非CSF组,并有效地预测蛋白质的大脑起源。分类模型如果使用高置信度CSF蛋白,则在曲线下达到0.89的面积。最重要的预测特征包括亚细胞定位,信号肽和跨膜区域。分类器良好地概括为较大的大脑检测到的蛋白质组,并能够正确预测通过亲和力蛋白质组学鉴定的新型CSF蛋白。除了阐明蛋白质分泌的潜在机制外,受过训练的分类模型还可以支持生物标志物候选者的选择。关键字:脑蛋白质组,脑脊液,流体生物标志物,机器学习,蛋白质分泌■简介
脑蛛网膜下腔出血(SAH-SBI)后的继发性脑损伤是导致颅内动脉瘤破裂后患者不良预后的重要原因。缺乏诊断生物标志物和新型药物靶标表示未满足的需求。先前的实验证据表明,脑脊液(CSF-HB)中无细胞的血红蛋白是SAH-SBI的病理生理驱动力。这项研究的目的是研究CSF-HB和SAH-SBI之间的临床和病理生理关联。我们前瞻性地招募了47例连续的患者,并在动脉瘤破裂后的14天内每天收集了CSF样品。有非常有力的证据表明CSF-HB和SAH-SBI之间存在正相关。SAH-SBI的CSF-HB的诊断准确性显着超过了已建立的方法(曲线下的面积:0.89 [0.85-0.92])。时间LC-MS/MS CSF蛋白质组学表明,伴有自适应巨噬细胞反应的红斑分解是动脉瘤破裂后CSF空间中发生的两个显性生物学过程。为了进一步研究CSF-HB和SAH-SBI之间的病理生理,我们探索了HB前体的血管收缩和脂质过氧化活性。这些实验表明,SAH-SBI患者的CSF-HB浓度阈值重叠的临界拐点重叠。选择性HB耗竭和解决HB效率的HAPTOGLOBIN或血红素舒适性血红素有效地减弱了患者CSF中CSF-HB的血管促进和脂质过氧化活性。共同,高CSF-HB水平与SAH-SBI之间的临床关联,潜在的病理生理基本原理以及抗果糖蛋白和血红蛋白在前视体实验中的有利作用将CSF-HB定位为CSF-HB作为一种非常有吸引力的生物标志物和潜在的药物靶标的CSF-HB。
流过周围空间的抽象脑脊液(CSF)是大脑清除代谢废物产物的机制的组成部分。轨迹示踪剂颗粒注射到小鼠大脑的甲壳虫(CM)中的实验表明,在周围的丘疹动脉周围的血管内空间中脉冲CSF流动的证据,其大量流动与血流相同的方向。但是,驾驶机制仍然难以捉摸。几项研究表明,大容量可能是由注射本身驱动的人工制品。在这里,我们通过新的体内实验解决了这一假设,在这些实验中,示踪剂颗粒使用双传感器系统同时注射并撤回等量的流体。此方法不会产生CSF体积的净增加,并且颅内压没有显着增加。然而,粒子跟踪揭示了在各个方面都与单源注射的早期实验中观察到的流相一致的流。
帕金森氏病(PD)是一种神经退行性疾病,在早期诊断中提出了挑战,尤其是在其前驱阶段。PD的特征是运动症状和非运动症状,在早期诊断诊断仍然具有挑战性。使用脑脊液(CSF)生物标志物已显示出有望作为早期检测和监测疾病进展的辅助工具。这项系统评价的目的是评估PD中CSF生物标志物的诊断潜力。我们专注于评估各种CSF生物标志物在PD的早期和准确诊断中的可靠性,灵敏度,特异性和效用。在包括PubMed,Scopus和Web的多个数据库中进行了全面搜索,以确定2015年1月至2024年11月发布的相关研究。如果研究检查了人类PD患者的CSF生物标志物,并将其与健康对照组或其他神经退行性疾病进行比较,则包括研究。从34个合格的研究中提取了样本量,生物标志物类型和诊断准确性的数据。使用标准工具评估了研究的方法论质量,并使用Prisma工具进行了定性合成。进行分析以评估选定的生物标志物的诊断性能。审查确定了几种有前途的CSF生物标志物,包括α-突触核蛋白,神经丝轻链(NFL),DJ -1,TAU和外泌体生物标志物。α-苏核蛋白表现出最高的诊断精度,灵敏度为70-85%,特异性为75-90%。α-苏核蛋白表现出最高的诊断精度,灵敏度为70-85%,特异性为75-90%。nfl在检测神经元损伤方面还显示出强灵敏度(65-85%),而DJ-1对于早期PD表现出很高的特异性。多生物标志物面板,包括与单个生物标志物相比,α-突触核蛋白,TAU和NFL的组合表现出优异的诊断精度。在研究过程中指出了生物标志物的性能的可变性,表明生物标志物分析的标准化需要通过大型多中心研究进行进一步验证。CSF生物标志物具有改善PD诊断的巨大希望,尤其是在组合使用时。但是,需要更多的研究来建立标准化方案并评估其在临床实践中的作用。多生物标志物面板显示出可能作为诊断工具的潜力,但是需要进一步研究以确认其临床实用性和在不同人群中的成本效益。未来的研究应集中于这些生物标志物的纵向跟踪,以监测疾病进展和治疗反应。
质量(obs。)强度(obs。)开始末端长度同工序列[m+h]+(theo。)质量类型ION_NAME错误(PPM)错误(AMU)77G7-1 77G7-2 77G7-3 77G7-4 77G7 77G7 2950.524278 4215144.5 287 311 25 25 2 25 2N4R [phospho]?[phospho]?[Phospho]?VQSKCGSKDNIKHVPGGGSVQIVYK 2949.931449 average 287-311_Phospho4_2N4R_a 200.9634884 0.592828515 0 1 0 0 1 2950.524278 4215144.5 256 281 26 2N4R [Phospho]?[Phospho]?VKSKIGSTENLKHQPGGGKVQIINKK 2950.209511 average 256-281_Phospho2_2N4R_a 106.6931135 0.314767038 1 0 0 0 1 2950.524278 4215144.5 350 374 25 2N4R [磷]?[phospho]?[phospho]?[Phospho]?VQSKIGSLDNITHVPGGGNKKIETH 2950.853499 average 350-374_Phospho4_2N4R_a -111.5679467 -0.329220666 0 0 0 1 1 2950.524278 4215144.5 359 383 25 2N4R [Phospho]?[phospho]?nithvpgggnkkiethkltfrenak 2951.112984平均359-383_phospho2_2n4r_a -199.4862197 -0.588706373 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2950.524278 4215144444.5 33444444444444444444年4月444.5日[phospho]?vtskcgslgnihhkpgggqvevkseksekl 2951.130967平均318-344_phospho2_2n4r_a -205.5785917 -0.606666689348 0 0 0 0 1 0 1 0 1 2950.5224215151444.5294444444444444. [磷]?[Phospho]?SKIGSTENLKHQPGGGKVQIINKKLD 2951.151178 average 258-283_Phospho2_2N4R_a -212.4255588 -0.626899938 1 0 0 0 1 2950.524278 4215144.5 277 304 28 2N4R iinkkldlsnvqskcgskdnikhvpggg 2951.385553平均277-304__2N4R_A -291.8204416 -0.861274635 0 1 0 1 0 0 0 0 1 0 1 0 1 2950.524278 4215151515144.5 264 3.2N33R ENERKHQPGGGKVQUVYKPVDLSKVTSK 2951.404132平均264-321__2N3R_A -298.113849 -0.879854446 1 0 0 0 0 0 0 0 0 0 0 1 2950.52424278 421515144.5 344.5 3444.5 3444.5 3472 26 2n2n44.2[Phospho]?KDRVQSKIGSLDNITHVPGGGNKKIE 2952.096111 average 347-372_Phospho2_2N4R_a -532.4462535 -1.571832514 0 0 0 1 1 2950.524278 4215144.5 350 376 27 2N4R [Phospho]?
影响中枢神经系统的血液系统肿瘤,最突出的是侵袭性 B 细胞淋巴瘤,需要快速诊断(通常通过立体定向活检)以启动治疗,从而促使采用非侵入性方式 [6]。在具有挑战性的病例中,脑脊液 (CSF) 的 DNA 甲基化 (DNAmeth) 和拷贝数变异 (CNV) 分析可能满足这一需求。健康和肿瘤细胞,包括中枢神经系统淋巴瘤 [11],可能会将 DNA 片段脱落到血液和脑脊液中作为无细胞 DNA (cfDNA)。此外,细胞碎片可以形成沉淀 DNA (seDNA)。在几例儿童高级别脑肿瘤中,CSF 含有足够量的肿瘤衍生 cfDNA (cf-tDNA),可通过基于连接的纳米孔测序进行基于甲基化和 CNV 的肿瘤分类 [ 1 ],并通过各种方法进行疾病监测 [ 15 ]。目前,这些方法需要费力的样品处理和昂贵的基础设施。在这里,我们已经将我们的快速无监督机器学习 (ML) 方法 [ 9 ] 改编为 CSF,用于对淋巴瘤和其他恶性脑肿瘤(包括转移瘤)进行鉴别诊断的病例。我们在两例 CNS 淋巴瘤病例中展示了它的临床应用。允许第二天将纳米孔测序衍生的甲基化模式与泛癌表观基因组和 CNV 数据进行比较