这也使得直接在原子水平上研究酶反应的整个过程成为可能,为酶学的新领域打开了大门。这将是根据反应中间体的结构(即酶的真实活性状态)合理设计催化剂和药物的第一步。 出版信息 标题:在原子分辨率下可视化光裂解酶的 DNA 修复过程 作者:Manuel Maestre-Reyna*、Po-Hsun Wang、Eriko Nango、Yuhei Hosokawa、Martin Saft、Antonia Furrer、Cheng-Han Yang、Eka Putra Gusti Ngurah Putu、Wen-Jin Wu、Hans-Joachim Emmerich、Nicolas Caramello、Sophie Franz-Badur、Chao Yang、Sylvain Engilberge、Maximilian Wranik、Hannah Louise Glover、Tobias Weinert、Hsiang-Yi Wu、Cheng-Chung Lee、Wei-Cheng Huang、Kai-Fa Huang、Yao-Kai Chang、Jianh-Haur Liao、Jui-Hung Weng、Wael Gad、Chiung-Wen Chang、Allan H. Pang、Kai-Chun Yang、Wei-Ting Lin、 Yu-Chen Chang、Dardan Gashi、Emma Beale、Dmitry Ozerov、Karol Nass、Gregor Knopp、Philip JM Johnson、Claudio Cirelli、Chris Milne、Camila Bacellar、Michihiro Sugahara、Shigeki Owada、Yasumasa Joti、Ayumi Yamashita、Rie Tanaka、Tomoyuki Tanaka、Fangjia Luo、Kensuke Tono、Wiktoria Zarzycka、Pavel Müller、Maisa Alkheder Alahmad、Filipp Bezold、Valerie Fuchs、Petra Gnau、Stephan Kiontke、Lukas Korf、Viktoria Reithofer、Christian Joshua Rosner、Elisa Marie Seiler、Mohamed Watad、Laura Werel、Roberta Spadaccini、Junpei Yamamoto、So Iwata、Dongping Zhong、Joerg Standfuss、Antoine Royant、Yoshitaka Bessho*, Lars-Oliver Essen*, Ming-Daw Tsai* <杂志> Science < DOI > 10.1126/science.add7795 补充信息 [1] X射线自由电子激光器(XFEL)
酵母细胞是单细胞微生物,可以在包括土壤,植物和动物在内的各种环境中找到。它们在食品和发酵行业中很重要,在食品和发酵行业中,它们用于生产各种酒精饮料,面包和奶酪。酵母细胞也已被用于其在生物技术中的作用,并用作遗传研究的模型生物。酵母细胞在土壤生态系统中起着至关重要的作用,有助于养分循环,植物健康和整体土壤生态学。本研究的重点是研究地点中土壤样品的酵母细胞的分离和表征。土壤样品是从卡莱布大学的五个地点收集的,代表了不同的栖息地和土壤类型。酵母分离出来。孤立的酵母是根据殖民地,形态和生化特征来表征的。分离并鉴定出二十种酵母菌分离株掉入属中;念珠菌,地理物种和糖疗种。念珠菌物种最丰富,隔离率为45%。这项研究有助于我们理解土壤生态系统中的酵母。这项研究为土壤提供了廉价酵母细胞来源的见解。这些酵母在农业,生物技术和环境修复中的潜在应用可以利用。关键词:酵母,土壤,卡莱布大学,拉各斯简介酵母细胞是单细胞微生物,可以在包括土壤,植物和动物在内的各种环境中找到。它们在食品和发酵行业中很重要,在食品和发酵行业中,它们用于生产各种酒精饮料,面包和奶酪(Legras等,2007)。酵母细胞也已被用于其在生物技术中的作用,并作为遗传研究的模型生物(Legras等,2007)。在不同环境中酵母细胞的隔离和鉴定已成为几项研究的主题(Chao等,2019)。
[1] M. V. Chao,“神经营养蛋白及其受体:许多信号通路的收敛点”,Nat。修订版Neurosci。,卷。4,不。4,pp。299–309,2003。[2] M. Bothwell,“ NGF,BDNF,NT3和NT4”,在神经营养因素中。实验药理学手册,施普林格,柏林,海德堡,2014年。[3] R. Levi-Montalcini,H。Meyer和V. Hamburger,“体外实验对小鼠肉瘤180和37对雏鸡胚胎的感觉和交感神经系统的影响,”癌症Res。,1954年。[4] R. Levi-Montalcini,“ 35年后的神经生长因子”,科学(80-。)。,1987。[5] Y.A. Barde,D。Edgar和H. Thoenen,“哺乳动物大脑的新神经营养因子的纯化”,Embo J.,1982。[6] K. R. Jones和L. F. Reichardt,“人类基因的分子克隆,该基因是神经生长因子家族的成员。”natl。学院。SCI。 U. S. A.,1990。 [7] P. C. Maisonpierre等。 ,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。 )。 ,1990。 [8] A. Hohn,J。Leibrock,K。Bailey和Y. A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。 [9] A. Rosenthal等。 ,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。 [10] N. Y. IP等。 natl。 学院。 SCI。SCI。U. S. A.,1990。[7] P. C. Maisonpierre等。,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。)。,1990。[8] A. Hohn,J。Leibrock,K。Bailey和Y.A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。[9] A. Rosenthal等。,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。[10] N. Y. IP等。natl。学院。SCI。SCI。,“哺乳动物神经营养蛋白4:结构,染色体定位,组织分布和受体特异性。”U. S. A.,1992。[11] R. Gotz等。,“ Neurotrophin-6是神经生长因子家族的新成员”,自然,1994年。[12] K. O. Lai,W。Y. Fu,F。C. F. Ip和N. Y.单元格。Neurosci。,1998。[13] M. A. Bothwell和E. M. Shopter,“β神经生长因子的离解平衡常数”,J Biol Chem,1977。[14] C. Radziejewski,R。C。Robinson,P。S。S. Distefano和J. W. Taylor,“脑源性神经营养因子和神经营养因子和神经营养蛋白3。的二聚体结构和构象稳定性,” Biiochemistry,1992。[15] M. J. Butte,P。K。Hwang,W。C。Mobley和R. J. Fletterick,“ Neurotrophin-3同二聚体的晶体结构显示出不同的区域用于结合其受体,” 1998年。[16] N.[17] R. C. Robinson等。,“神经营养蛋白4同二聚体的结构和脑衍生的神经营养因子/神经营养蛋白4异二聚体揭示了一个常见的TRK结合位点,”蛋白质SCI。,2008。[18] K. K. Teng,S。Felice,T。Kim和B. L. Hempstead,“了解胸部营养蛋白的作用:最近的进步和挑战”,发展性神经生物学。2010。401–3,1992。:ebsCohost,” Annu。修订版Neurosci。[19] G. CM,“通过生理活性调节脑神经营养蛋白表达。”趋势Pharmacol Sci,pp。[20] S. D. Skaper,“神经营养因素:概述”,《分子生物学方法》,2018年。[21] A. K. McAllister,L。C。Katz和D. C. Lo,“神经营养蛋白和突触可塑性。,1999。[22] S. Pezet和S. B. McMahon,“神经营养蛋白:疼痛的介体和调节剂”,Annu。修订版Neurosci。,2006年。[23] D. R. Kaplan,B。L。Hempstead,D。Martin-Zanca,M。V。Chao和L. F. Parada,“ TRK原型癌基产品:神经生长因子的信号传递受体,”科学(80-。)。,1991。[24] R. Klein等。,“ TRKB酪氨酸蛋白激酶是脑源性神经营养因子
1. Pachghare PR Nagvase SY 影响闭环脉动热管功能的参数:综述。工程科学研究杂志 ISSN 2278 – 9472 第 2(1) 卷,35-39,一月 (2013)。 2. S. Rudresha、ER Babu、R. Thejaraju,填充率对脉动热管传热性能的实验研究及其影响,热科学与工程进展 (2019)。 3. MC Yew、LH Saw、MK Yew、WT Chong、HM Poon、WS Liew、WH Yeo。住宅建筑闭环脉动热管冷屋顶系统的开发。热能工程案例研究 (2021)。 4. Zhuantao Hea、Dongwei Zhanga、Jian Guana、Songzhen Tanga、Chao Shenb。含二氧化硅纳米流体的脉动热管的传热和流动可视化:一项实验研究。国际传热传质杂志 (2022)。 5. Ruixiang Wanga 、Meibo Xinga 、Jianlin Yub。重力对使用表面活性剂溶液的脉动热管性能的影响。国际传热传质杂志 (2020)。 6. Wang, H. Zheng, X. Han, X. Xu, G. Chen,脉动热管散热发展综述,Renew. Sustain. Energy Rev. 59 .692–709。(2016) 7. Marengo M、Mamelli M 和 Zinna S.,多匝闭环脉动热管的数值模型:由于蜿蜒引起的局部压力损失的影响。传热传质杂志,55,1036–1047,(2011)。 8. Ji Li b, Chenxi Li a, 用于现场冷却高功率服务器 CPU 的平板脉动热管模块的热特性。热科学与工程进展 (2022)。9. Pascal Messmer、Florian Schwarz、Alexander Lodermeyer、Vladimir Danova、Christian Fleßner、Stefan Becker、Rolf Hellinger。针对热点应用的改进脉动热管设计分析。国际传热传质杂志 (2022)。10. Khandekar S. Groll M.脉动热管:进展与前景,国际热科学会议论文集
大面积柔性双原子亚纳米薄镧系氧化物纳米卷的常规合成 吴苗苗 1、吴彤 2、孙明子 2、陆璐 2、李娜 1、张超 1、黄博龙 2 *、杜亚平 1 * 和闫春华 1,3,4 1 南开大学材料科学与工程学院、国家先进材料研究院、先进能源材料化学重点实验室、稀土与无机功能材料研究中心,天津 300350 中国。 2 香港理工大学应用生物及化学科技系,香港九龙红磡,999077 中国。 3 北京分子科学国家实验室,稀土材料化学及应用国家重点实验室,北大-港大稀土材料与生物无机化学联合实验室,北京大学化学与分子工程学院,北京 100871,中国。 4 兰州大学化工学院,兰州 730000,中国 电子邮件:bhuang@polyu.edu.hk(BH);ypdu@nankai.edu.cn(YD) 摘要 在许多超薄纳米材料的合成中都发现了表面波纹或滚动现象。然而,精确合成和控制这种细微纳米结构仍然极具挑战性,表明其在未来纳米能源系统中具有尚未开发的潜力。在本文中,建立了一种简单但稳定的胶体化学方法来合成超薄镧系氧化物纳米卷,首次实现了具有卷曲边缘的原子级厚度。详细的机理研究证实,纳米卷的滚动行为是由表面活性剂 3-溴丙基三甲基溴化铵中溴烷基团的吸附引起的表面电荷扰动引起的。更重要的是,实验证明了亚纳米薄镧系元素纳米卷的可逆和可控滚动。作为实际应用的证明,超薄镧系元素氧化物纳米卷/碳纳米管薄膜已被用于锂硫电池作为夹层,表现出优异的电化学性能。我们的方法广泛应用于高产率生产新型无机超薄纳米结构,在能源系统中有着巨大的应用前景。关键词:稀土,镧系元素氧化物,超薄纳米结构,密度泛函理论,锂硫电池
R 261714Z 5 月 23 日 MID120000164368T FM COMSUBFOR 诺福克 VA 至 ALSUBFOR 信息 RUOIAAA/DOE 海军反应堆 OFC 华盛顿特区 RUOIAAA/COMSUBLANT 诺福克 VA RUOIAAA/COMSUBPAC 珍珠港 HI RUOIAAA/COMNAVPERSCOM 米林顿 TN RUOIAAA/CTF 88 RUOIAAA/COMSUBFOR 诺福克 VA BT UNCLAS //N01000// ***这是 OIX 网关诺福克 VA 整理的 2 部分消息*** MSGID/GENADMIN/COMSUBFOR/-/MAY// SUBJ/FY24潜艇部门负责人选择// RMKS/1。FY24 潜艇部门负责人选拔委员会于 2023 年 5 月 22 日召开会议。委员会由一名潜艇旗舰军官和 12 名潜艇主要指挥官和主要指挥官上尉组成。2.以下军官被选为潜艇部门负责人。亚当斯·托马斯·K·阿戈斯托 阿比盖尔·R·艾伦 达科塔·杰伊·安德森 克里斯汀·E·安德森·瓦里克 布雷登·阿雷拉诺 纳撒尼尔·罗伯特·阿诺德 卢克·兰德尔·阿蒂斯 贾斯汀·泰勒·奥根斯坦 玛丽·勒盖尔·贝利·康纳 帕特里克·贝利 奥马尔·谢里夫·贝克 罗伯特·斯科特·班克斯 唐纳德·阿尔伯特·班克斯 詹内尔 克里斯滕·昆塔·班特尔 约翰·亚历山大·巴纳德 贾斯汀 丹尼尔·鲍曼 凯文·R·宾德尔 瑞安·J·布利斯 乔丹·A·博博克 克里斯托弗·亨利·博格丹 威廉·T·博尔顿 约翰·格雷戈里·伯恩 斯蒂芬·唐纳德·博伊 弗吉尼亚·玛丽·布鲁格 约瑟夫奥斯汀·巴克 瑞安·C·邦德罗斯 约瑟夫·威廉·伯格伦 艾伦·D·伯尼 凯尔·A·伯勒斯 詹姆斯·P·布什 迈克尔·泰勒 布斯塔曼特·AB·伯恩 泰勒·M·卡贝什 迪翁·图尼克·坎贝尔 安德鲁·G·坎贝尔 玛丽·弗朗西斯·坎农 伊丽莎白·A·卡尔森 埃利·亚历山大·塞多塔尔 埃里克·J·塞诺克 伊桑·K·陈 凯莉·李 钱德勒 埃琳·T·赵 埃里克·杨 肖万·卡森 盖林·陈 张思琪 杰基·金·惠 乔特 乔丹·D·乔瓦特 马修·C·希拉 扎卡里·史蒂文·西里洛 扎卡里·保罗·西斯内罗斯 博·詹姆斯·克拉克 兰德尔·斯蒂尔 科布·斯宾塞 盖伊·科尔曼奥斯汀 兰德尔·康纳 约书亚·亚历山大·科里 马修·J·科恩斯 马修·道格拉斯·科斯塔 尼古拉斯·安东尼
我们是一个国际生物科学家,保护主义者和环保主义者组的国际群体,他们多年来一直密切关注Pangolins的困境和保留。穿衣蛋白包含哺乳动物秩序的pholidota,其中包含在非洲多种栖息地(4种)和亚洲(4种)中发现的八种活物种,这些物种提供了重要的生态系统服务,包括提供“害虫”控制和改善土壤质量(Chao等,2020年)。它们仍然是世界上最受威胁和最受欢迎的哺乳动物物种(Gaubert等,2018; Sarah Heinrich等,2016)。一个多世纪以来,有许多人可以俘虏这些动物,但是很少有成功的例子,因为它们通常死于感染(Hua等,2015; Lihua等,2015)。在2016年,濒临灭绝的中国和马来亚式穿衣的基因组(图1)进行了测序并重新进行了两个重要的发现(Choo等,2016)。首先,据我们所知,穿山甲是唯一已知缺乏IFNE(Interferon Epsilon)基因(对粘膜免疫重要)的哺乳动物,这表明它们对病原体的抗性可能会降低。此外,我们发现穿山甲的热休克蛋白(HSP)基因家族数量减少,这表明诱导免疫供应的压力敏感性比其他哺乳动物谱系更重要。这些发现可能会有助于显然为什么圈养的穿衣经常屈服于感染。必须开发和利用新技术来确保保护穿衣蛋白的种群。利用基因组驱动的生物学见解,研究人员通过使环境,食物和水尽可能地卫生在适当的养父母的情况下,成功地建立了一个俘虏的马来人穿搭人群,直至第三次生成。这些穿衣可以用作重新建立大量天然种群和增强野生穿山甲种群的遗传库存,并有助于维持遗传多样性。值得注意的是,成功重新引入被俘虏的繁殖种群已经阻止了包括阿拉伯Oryx(Oryx Leucoryx)在内的许多特殊灭绝(Ostrowski et al。,1998),黄色 - 散发的亚马逊鹦鹉(Amazona Barbadensis)(Amazona Barbadensis)(Sanz and Grajal,1998年),欧洲bison(bisone bison) Alpine Ibex(Capra Ibex Ibex)(Stüwe和Nievergelt,1991年)和胡须秃鹰(Gypaetus barbatus)(Hirzel等,2004)。但是,如果没有所有主要利益相关者(包括政府,研究人员和公众)的合作,对Pangolins的成功保护仍然可能很远(Hefteron和Gaubert,2021年)。此外,需要重大努力来减少需求
Kuan-Song Wang, M.D.1,2 *, Gang Yu, Ph.D. 3, *, Chao Xu, Ph.D. 4, *, Xiang-He Meng, Ph.D. 5, *, Jianhua Zhou, M.D.1,2 , Changli Zheng, M.D.1,2 , Zhenghao Deng, M.D.1,2 , Li Shang, M.D.1 , Ruijie Liu, M.S.1 , Shitong Su, B.S.1 , Xunjian Zhou, B.S.1 , Qingling Li, M.D.1 , Juanni Li, M.D.1 , Jing Wang, M.S.1 , Kewen Ma, M.S.2 , Jialin Qi, B.S.2 , Zhenmin Hu, B.S.2 , Ping Tang, B.S.2 , Jeffrey Deng 6 , Xiang Qiu, B.S.7 , Bo-Yang Li, B.S.7 , Wen-Di Shen, B.S.7 , Ru-Ping Quan, B.S.7 , Jun-Ting Yang, B.S.7 , Lin-Ying Huang 7 , Yao Xiao 7 , Zhi-Chun Yang, M.D.8 , Zhongming Li, Ph.D. 9 , Sheng-Chun Wang, Ph.D. 10 , Hongzheng Ren, Ph.D. 11 , Changjiang Liang, B.S.11 , Wei Guo, M.S.12 , Yanchun Li, M.D.12 , Heng Xiao, M.D.13 , Yonghong Gu, M.D.13 , Jing-Ping Yun, M.D.14 , Dan Huang, M.D.15 , Zhigang Song, M.D.16 , Xiangshan Fan, M.D.17 , Ling Chen, M.D.18 , Xiaochu Yan, M.D.19 , Zhi Li, M.D.20 , Zhong-Chao Huang, Ph.D. 3 , Jufang Huang, Ph.D. 21 , Joseph Luttrell, M.S.22 , Chao-Yang Zhang, Ph.D. 22 , Weihua Zhou, Ph.D. 23 , Kun Zhang, Ph.D. 24 , Chunhui Yi, M.D.25 , Hui Shen, Ph.D. 6,26 , Yu-Ping Wang, Ph.D. 6,27 , Hong-Mei Xiao, M.D., Ph.D. 7,# , Hong-Wen Deng, Ph .D. 6,7,26,# 1.Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China 2.Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China 3.Department of Biomedical Engineering Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China 4.Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA 5.Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China 6.Tulane Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA 7.School of Life Sciences, Central South University, Changsha, Hunan,410013, China 10.College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, 410081, China 11.中南大学基础医学院系统生物学、数据信息与生殖健康研究中心,湖南长沙 410008,中国 8.中南大学湘雅药学院药理学系,湖南长沙 410078,中国 9.浙江省杭州市艾迪康医学检验所有限公司病理实验室
Xue-Ru Fan ( 范 雪 如 ) 1,2,3,† , Yin-Shan Wang ( 王 银 山 ) 1,3,4,† , Da Chang ( 常 达 ) 1,3,† , Ning Yang ( 杨 3 宁 ) 1,2,3,4 , Meng-Jie Rong ( 荣 孟 杰 ) 1,2,3,4 , Zhe Zhang ( 张 吉吉 ) 5 , Ye He ( 何 叶 ) 6 , Xiaohui Hou ( 侯 4 晓晖 ) 7 , Quan Zhou ( 周 荃 ) 1,2,3 , Zhu-Qing Gong ( 宫 竹 青 ) 1,2,3 , Li-Zhi Cao ( 曹 立 智 ) 2,4 , Hao-Ming 5 Dong ( 董 昊 铭 ) 1,4,8,9 , Jing-Jing Nie ( 聂 晶晶 ) 1,3 , Li-Zhen Chen ( 陈 丽 珍 ) 1,3 , Qing Zhang ( 张 6 青 ) 2,4 , Jia-Xin Zhang ( 张 家 鑫 ) 2,4 , Hui-Jie Li ( 李 会 杰 ) 2,4 , Min Bao ( 鲍 敏 ) 2,4 , Antao Chen ( 陈 安 7 涛 ) 10,11 , Jing Chen ( 陈 静 ) 12,13 , Xu Chen ( 陈 旭 ) 11 , Jinfeng Ding ( 丁 金 丰 ) 2,4 , Xue Dong ( 董 雪 ) 2,4 , 8 Yi Du ( 杜 忆 ) 2,4 , Chen Feng ( 冯 臣 ) 2,4 , Tingyong Feng ( 冯 廷 勇 ) 11 , Xiaolan Fu ( 傅 小 兰 ) 2,14 , 9 Li-Kun Ge ( 盖 力 锟 ) 2,4 , Bao Hong ( 洪 宝 ) 12,15 , Xiaomeng Hu ( 胡 晓 檬 ) 16 , Wenjun Huang ( 黄 文 10 君 ) 12,15 , Chao Jiang ( 蒋 超 ) 17 , Li Li ( 李 黎 ) 12,13 , Qi Li ( 李 琦 ) 17 , Su Li ( 李 苏 ) 2,4 , Xun Liu ( 刘勋 ) 2,4 , 11 Fan Mo ( 莫 凡 ) 2,14 , Jiang Qiu ( 邱 江 ) 11 , Xue-Quan Su ( 苏 学 权 ) 7 , Gao-Xia Wei ( 魏 高 峡 ) 2,4 , 12 Yiyang Wu ( 吴 伊 扬 ) 2,4 , Haishuo Xia ( 夏 海 硕 ) 11 , Chao-Gan Yan ( 严 超赣 ) 2,4 , Zhi-Xiong Yan ( 颜 13 志 雄 ) 7 , Xiaohong Yang ( 杨 晓 虹 ) 16 , Wenfang Zhang ( 张 文 芳 ) 2,4 , Ke Zhao ( 赵 科 ) 2,14 , Liqi Zhu 14 ( 朱 莉 琪 ) 2,4 , Lifespan Brain Chart Consortium (LBCC) * , Chinese Color Nest Consortium 15 (CCNP) ** , and Xi-Nian Zuo ( 左 西 年 ) 1,2,3,4,7,18,*** 16
我们的职责 2019 年 4 月,美国交通部长赵小兰 (Elaine L. Chao) 成立了特别委员会,负责审查联邦航空管理局的飞机认证流程(简称“委员会”)。此次行动是为了应对两架波音 737 MAX 8 飞机坠毁事件:一架在印度尼西亚,一架在埃塞俄比亚,共造成 346 人丧生。该委员会是一个由航空和安全专家组成的独立小组,负责对联邦航空管理局 (FAA) 的产品认证程序以及 FAA 和波音在 737 MAX 8 认证期间遵循的流程进行客观审查。委员会受命审查认证流程,评估系统的潜在改进,并提出加强航空安全的建议。本报告记录了委员会的调查结果和建议。时间框架和方法 在六个月的时间里,委员会努力从 FAA 和利益相关者那里获得有关飞机认证系统的第一手信息和见解。委员会会见了多位航空和安全管理专家。委员会与 FAA 的主题专家和管理人员以及航空贸易协会、劳工组织、行业和其他美国政府机构的代表进行了交谈。委员会还与直接参与 737 MAX 8 认证的人员进行了交谈,包括 FAA 波音航空安全监督办公室 (BASOO) 的主要工作人员以及一大批波音工程师、试飞员和安全专家。协作审查 在其他几个政府实体正在调查波音 737 MAX 8 或相关事故的某些方面时,委员会进行了产品认证审查。在这些平行的审查中,值得注意的是,该委员会的调查结果和建议并非官方调查的产物。相反,委员会成员受命对 FAA 当前的认证流程进行审查。委员会的方法是协作的,而不是调查性的。其任务是收集和分析信息,而不是挑毛病。其重点是提出调查结果和建议,以加强未来的进程。因此,委员会的任务和重点是独一无二的。风险中的安全至上 在所有访谈和讨论中,委员会都看到了对安全至上的坚定、坚定的承诺和对风险的敏锐意识。委员会的事实调查讨论和审议——重点关注认证流程改进,并以合作精神进行——营造了一种有利于让接受采访的航空和安全专家畅所欲言并真正关注安全和改善潜在弱点的机会的氛围。此外,虽然委员会的互动本质上是合作性的,但委员会成员相互挑战,从不同角度开展工作,并努力就本报告及其建议达成共识。委员会与美国国家航空航天局 (NASA) 进行了引人注目的讨论。一位 NASA 官员强调了现实中每天都在揭示的一个基本事实:所有复杂的