公共部门审计任命有限公司 (PSAA) 发布了“审计师和受审计机构的责任声明”。该声明可在 PSAA 网站上查阅。责任声明是指定审计师和受审计机构之间的正式聘用条款。它概述了审计师和受审计机构的不同职责的开始和结束,以及对受审计机构在某些领域的期望。PSAA 发布的“任命条款和进一步指导(2021 年 7 月更新)”(https://www.psaa.co.UK/managing-audit-quality/terms-of-appointment/terms-of-appointment-and-further-guidance- 1-july-2021/)规定了审计师必须遵守的额外要求,超出了国家审计署审计实践准则(准则)和立法中规定的要求,并涵盖了具有重复性的实践和程序事项。本报告仅向东萨福克郡议会审计与治理委员会提供。我们开展工作的目的是向东萨福克郡议会审计与治理委员会陈述我们需要在本报告中陈述的事项,不用于其他目的。在法律允许的最大范围内,我们不接受或承担除东萨福克郡议会审计与治理委员会以外的任何人对本报告或我们形成的意见的责任。未经我们事先书面同意,不得将其提供给任何第三方。
•PC 667S3 - 3先前罢工•PC 1170(h)(3) - 先前的严重或暴力重罪•CRC 4.421(a)(3) - 受害者很脆弱•CRC 4.421(b)(1) - 被告已被告从事暴力行为•CRC 4.421(2)(2) - 曾经是成年后的•CRC•3。BCC(B)。先前的监狱任期•CRC 4.421(b)(4) - 被告正在缓刑,强制性监督,释放后•CRC 4.421(b)(5) - 被告的先前绩效不令人满意
,我们提出了一种通过采用拉格朗日点的外来特性来指导带电颗粒(例如电子和质子)的方法。通过围绕这些平衡点展开的动力学使这种飞跃成为可能,稳定地捕获了这种粒子,类似于木星轨道上的木马小行星的方式。与传统的方法论不同,该方法可以使带电颗粒的聚焦或三维储存,而拟议的方案可以指导小型横截面区域中的非偏见和相对论电子和质子在长期不变的情况下以长期不变的方式引导,而无需任何可观的能量损失 - 与光子传输相似于光子的光合物。在这里,通过采用扭曲的静电电势来实现粒子引导,而静态电势又在真空中引起稳定的拉格朗日点。原则上,可以在由此产生的波导的基本模式中实现指导,从而提出了在量子域中操纵这些颗粒的前景。我们的发现可能在科学和技术追求的广泛应用中很有用。这些应用可以涵盖电子显微镜和光刻,粒子加速器,量子和经典通信/传感系统,以及量子网络中节点之间的纠缠量子的方法。
然而,HL-LHC 的覆盖范围依赖于比 LHC 高一个数量级的亮度,这意味着每次光束碰撞时发生的额外质子-质子相互作用的数量(也称为堆积,μ)将增加 3 到 5 倍,达到每次碰撞 140 到 200 次额外的相互作用。因此,HL-LHC 的计算环境将极具挑战性,目前的预测表明,处理数据所需的计算资源将超过预算预测。用于重建带电粒子轨迹的模式识别算法是重建模拟数据和碰撞数据事件的关键挑战。模式识别算法 [5] 可大致分为全局方法或局部方法。全局模式识别方法通过同时处理来自全探测器的所有测量值来寻找轨迹。全局方法的例子包括保角映射或变换方法,如霍夫变换 [6、7] 和神经网络 [8]。局部模式识别方法根据探测器局部区域的测量结果生成轨迹种子,然后搜索其他命中点以完成轨迹候选。局部方法的示例包括轨迹道路和轨迹跟踪方法,例如卡尔曼滤波器 [9-11]。模式识别算法通常在找到种子之后的轨迹重建序列中运行。一旦通过模式识别算法识别出沉积的能量集,就可以通过拟合算法确定轨迹的参数。用于描述轨迹的参数取决于探测器的几何形状,但通常使用五个(如果包含时间信息,则为六个)参数。轨迹参数通常包括动量(与曲率成反比)、描述传播方向的角度以及用于表征起点的撞击参数。为了说明 HL-LHC 所带来的挑战,图 1 显示了每个事件的处理时间与堆积的关系,该图使用了 ATLAS 实验使用基于卡尔曼滤波器的模式识别序列记录的数据。处理时间与 μ 的增加成比例,这是模式识别算法的典型特征。在 HL-LHC 中,μ 的预期值将明显位于曲线的右侧,因此需要大量的 CPU 资源。未来的强子对撞机(例如未来环形对撞机项目中提出的强子-强子对撞机 [ 13 ]),预计会出现更多的堆积,每个事件可能最多增加 1000 次相互作用。由于这一挑战,开发用于高能物理模式识别的新算法和新技术目前是一个非常活跃的发展领域。本文概述了正在进行的研究,以确定量子计算机在未来如何用于模式识别算法。量子计算机最早是在 40 多年前提出的 [14-16],最初的想法是开发一种利用自然界中的量子过程来更好地模拟自然的计算机。十年后,量子算法的发展引起了人们的进一步兴趣,这些算法展示了量子计算机解决经典难题的潜力,包括质数分解 [17] 和搜索算法 [18,19]。第一台量子计算机基于现有的核磁共振技术 [20-22]。最近,我们进入了所谓的噪声中型量子 (NISQ) 时代 [23],量子计算机具有数十个逻辑量子位,可以超越当前经典计算机的能力,尽管受到显著噪声的限制。量子位是经典计算机上用于存储信息的比特的量子类似物。目前可用的量子计算机可分为量子退火器或基于电路的量子计算机。量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产目前最多 5000 个量子比特的商用量子退火器 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产商用量子退火器,目前最多有 5000 个量子比特 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产商用量子退火器,目前最多有 5000 个量子比特 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM
自由仅保持“重要”的自由度o使用“有效”相互作用•经典的第一步:原子和相互作用(全原子或原子)•通常需要进一步的粗粒度,并且有用•对于软物质,我们通常在分子和介质水平上,例如。:聚合物
在高能粒子碰撞中,带电轨迹查找是一项复杂而又至关重要的工作。我们提出了一种量子算法,特别是量子模板匹配,以提高轨迹查找的准确性和效率。通过引入数据寄存器并利用新颖的 oracle 结构来抽象量子振幅放大例程,可以将数据解析到电路并与命中模式模板匹配,而无需事先了解输入数据。此外,我们解决了命中数据缺失带来的挑战,证明了量子模板匹配算法能够从命中数据缺失的命中模式中成功识别带电粒子轨迹。因此,我们的研究结果提出了适合实际应用的量子方法,并强调了量子计算在对撞机物理学中的潜力。
1 美国国家标准与技术研究所 (NIST),美国马里兰州盖瑟斯堡 20899 2 特拉华大学,美国特拉华州纽瓦克 19716 3 克莱姆森大学,美国南卡罗来纳州克莱姆森 29634 4 马里兰大学,美国马里兰州帕克分校 20742 将离子限制在离子阱中有许多有趣的应用,包括精密光谱学、量子计量学以及强耦合单组分等离子体中的集体行为。在大多数情况下,单电荷离子或几次电离的物质是在离子阱内原位产生的。但是,某些应用需要专用的外部离子源。例如,将离子束注入线性射频 (RF) 阱中,形成以空间电荷为主的非中性等离子体,用于模拟强带电粒子束传播的实验,例如重离子聚变反应堆、散裂中子源和高能物理中的粒子束。强空间电荷效应使高电荷离子 (HCI) 的隔离更加复杂,该效应与电荷状态的平方成正比。在这项工作中,我们报告了在双曲线 RF 阱中捕获 ~500 Ne 10+ 离子。高电荷离子从 NIST 的电子束离子源/阱 (EBIS/T) 中提取,随后由 7 米长的光束线引导至离子阱装置;嵌套在静电光束线光学器件中的电荷质量分析仪用于选择要在 RF 阱中重新捕获的单个电荷状态 (Ne 10+)。我们讨论了实验优化,并将结果与计算机模拟进行了比较。实验捕获效率达到了 ~20%,在双曲线 RF 阱中捕获了 ~500 个 Ne 10+ 离子,与单元 Penning 阱中达到的捕获效率相当 [1]。RF 阱中可用的更大光学通道有利于改进光谱实验。由于 RF 驱动的微运动加热并且没有任何冷却机制,观察到的存储在 RF 阱中的 Ne 10+ 离子的存储寿命为 69 毫秒,短于单元 Penning 阱中相应的存储寿命。尽管如此,这对于各种光谱实验都很有用,包括许多电荷状态的原子状态寿命测量。探索了增加捕获离子数量和存储寿命的可能改进方法。参考文献
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 9 月 26 日发布。;https://doi.org/10.1101/2024.09.24.614843 doi:bioRxiv 预印本
微型真空电弧推力器是微型和纳米卫星上推进系统的候选系统之一。它们具有多种优势,例如比冲高、使用密度高、体积小的固体推进剂而不必使用储罐和压力系统,以及包含电子和离子的等离子体膨胀而不必使用中和阴极。多电荷离子的出现是解释离子以极高速度存在的原因之一。本文重点介绍了真空电弧推力器的简化一维模型,考虑了真空电弧推力器典型条件下阴极表面的电子和原子发射以及极间气体的分解。对于钛阴极材料,结果表明,逐步电离是理解真空电弧条件下观察到的高等离子体的关键因素。
