废水和活细胞中Cr(VI)荧光感应的材料,无机化学,
本研究的比较distionPractices和largelanguagemodel(LLM)的designPractice和绩效与48小时原型Hackathon中的研究生工程专业的学生有关,该数据集基于一个包含100多个原型的数据集。LLM通过指示执行其指示并提供客观反馈,自主产生的想法并在没有人类干预的情况下做出所有设计决策的两个参与者参加。LLM表现出与人类参与者相似的原型制作实践,并在六支球队中获得第二名,成功地设计并为功能原型提供了建筑说明。LLM的概念产生的cap质特别强。然而,LLM在面临小小的困难,为设计中增加了不必要的复杂性并经验丰富的设计固定时,过早地放弃了有前途的概念。由于模糊或不清楚的描述,LLM与参与者之间的沟通挑战,而LLM难以保持连续性和回答中的相关性。基于这些发现,提出了六个有关在设计过程中实施LLM之类的LLM的建议,包括利用它来构思,确保人类的监督来确保关键决策,促使其考虑替代方案,并在子系统级别进行特定和可管理的任务。
由OpenAI开发,GPT-4 1具有高级推理能力,复杂的代码生成以及在多个学科的熟练程度。它可以处理文本和图像,展示接近人类能力的技能。值得注意的是,GPT-4已经解决了幻觉和提高的事实准确性等问题。与其前身可自由访问的GPT-3.5相比,GPT-4在各个类别的事实评估中得分近80%。该模型已在超过万亿个参数上训练,并支持最大上下文长度为32,768个令牌。最近,据透露,GPT-4是一个包括八个不同模型的混合模型,每个模型都有2200亿个参数。虽然GPT-4的响应速度较慢,并且推理时间较高,但它仍然是2024年严重应用的最佳选择。
近年来,人工智能(AI)已成为各个领域的强大工具,生物信息学是其表现出变革性潜力的最杰出领域之一。生物信息学涉及大规模的生物学数据分析,包括基因组序列,蛋白质结构和临床数据。使用机器学习(ML),深度学习(DL)和自然语言处理(NLP)技术在理解复杂的生物学现象方面加速了进展,而在这项革命的最前沿,是OpenAI开发的大型语言模型。chatgpt建立在GPT(生成预审预测的变压器)等尖端神经网络体系结构上,在文本生成,数据解释甚至对话交流方面都表现出了非凡的功能。其在生物信息学中的实施可以导致更快,更有效的研究和更有效的临床决策。从协助基因组学到改善医学教育和增强药物发现,Chatgpt正在改变生物信息学家和医疗保健专业人员处理复杂问题的方式。但是,与任何技术进步一样,需要考虑的挑战。这些包括数据隐私问题,AI-I-Intent的道德含义以及AI模型在临床决策中的可靠性。本手稿旨在探索生物信息学中Chatgpt的潜力和局限性,从而概述其应用,道德考虑以及AI在生物医学科学中的未来方向。
出版日期:2025/02/21摘要:人工智能的快速发展(AI)导致了正在改变各种行业的复杂语言模型的发展。其中,由于其在自然语言处理(NLP),机器学习(ML)(ML)及其在不同领域的应用,OpenAI的Chatgpt和DeepSeek的AI模型由于它们在自然语言处理(NLP)中的能力而引起了极大的关注。本文介绍了Chatgpt和DeepSeek之间的全面比较,重点是其建筑差异,性能指标,应用程序和潜在的未来方向。该研究基于对相关文档的文献综述,包括技术论文,用户指南和行业报告。调查结果表明,尽管两种模型在NLP任务中都表现出色,但它们的基础体系结构,培训方法和特定用例有所不同。本文以该领域的未来研究和发展的建议结束。关键字:chatgpt,DeepSeek,生成AI,NLP,机器学习。如何引用:Rahul Vishwanath Dandage博士(2025)。对Chatgpt和DeepSeek的比较分析:功能,应用程序和未来方向Chatgpt&DeepSeek。国际创新科学与研究技术杂志,10(2),207-211。 https://doi.org/10.5281/zenodo.14899162
附件A-使用生成人工智能(AI),例如苏格兰政府生成人工智能(AI)中的Chatgpt,是一个广泛的标签,描述了任何类型的人工智能,可用于创建新文本,图像,视频,音频或代码。大语言模型(LLM)是此类AI的一部分,并产生文本输出。chatgpt和Google的双子座是使用LLM的生成AI的公开可用的版本。他们允许用户输入文本并从系统中寻求视图,或要求系统根据给定主题创建输出。您还可以要求它总结长文章,获取问题的特定长度的答案或为所述功能编写代码。英国政府有关如何使用生成AI英国政府的指导,已发布了使用生成AI的框架,该框架基于10个关键原则:1。您知道什么是生成AI及其局限性。2。您合法,道德和负责任地使用生成性AI。3。您知道如何确保生成AI工具安全。4。您在正确的阶段拥有有意义的人类控制。5。您了解如何管理完整的生成AI生命周期。6。您使用合适的工具来工作。7。您是开放和协作的。8。您从一开始就与商业同事合作。9。您拥有建立和使用生成AI所需的技能和专业知识。10。您将这些原则与组织的政策一起使用,并拥有正确的
摘要:在数字时代,聊天机器人已成为自动化通信和改善各个部门用户体验的重要工具。本文提出了由自然语言处理(NLP)提供动力的聊天机器人助手系统,以对用户查询提供智能,上下文感知和实时响应。该系统结合了NLP技术,例如文本预处理,意图识别和实体提取,以促进有效的相互作用。我们探索系统的体系结构,工作原理和应用,以及其在不同域中的性能评估。关键字:聊天机器人,自然语言处理,NLP,意图识别,实体提取,对话系统,对话AI,文本预处理,机器学习。I.引言聊天机器人随着能够理解和回应人类语言的自动助手而广泛普及。它们用于各种应用程序,包括客户支持,虚拟助手,医疗保健等。这些系统背后的核心技术是自然语言处理(NLP),它使机器能够以有意义的方式解释,处理和生成人类语言。本文讨论了一个利用NLP技术与用户交互的聊天机器人助手系统。我们专注于关键的NLP任务,例如令牌化,意图识别和实体提取,这些任务构成了有效的对话性AI系统的骨干。II。 这些组件如下所示:系统的主要组成部分是:1。 2。 3。 4。 5。II。这些组件如下所示:系统的主要组成部分是:1。2。3。4。5。系统体系结构NLP提供动力的聊天机器人助理系统的体系结构涉及几个关键组件,它们可以和谐地处理用户查询并生成适当的响应。用户界面:用户与聊天机器人进行交互的平台或接口(例如,网站,移动应用程序,消息平台)。文本预处理:此步骤清洁并准备用户输入以进行进一步分析。它涉及令牌化,删除停止词和茎/诱饵。意图识别:系统从输入文本中确定用户的意图。这是使用机器学习或深度学习算法(例如支持向量机(SVM),随机森林或神经网络)完成的。实体提取:识别关键实体(例如日期,名称,位置等)在用户输入中。对话管理:系统决定如何根据公认的意图和提取的实体做出响应。可以使用基于规则或生成的方法来制定响应。6。响应生成:此组件根据对话上下文和用户查询生成响应。7。输出:生成的响应将发送回用户界面以进行演示。iii。方法论3.1文本预处理文本预处理是NLP任务的关键步骤,因为它将原始输入转换为结构化格式以进行分析。主要的预处理技术是:•令牌化:将输入文本分解为较小的单元(令牌),例如单词或短语。
理解和预测无机材料的特性对于加速材料科学和驱动能源,电子及其他方面的应用程序至关重要。通过多模式大语言模型(LLMS)将材料结构数据与基于语言的信息集成在一起,从而通过增强人类–AI相互作用为支持这些努力提供了巨大的潜力。但是,一个关键挑战在于将原子结构完全分辨到LLMS中。在这项工作中,我们引入了MatterChat,这是一种多功能结构感知的多模式LLM,将材料结构数据和文本输入统一为单个粘性模型。MatterChat采用桥接模块来有效地将预验证的机器学习间的原子势与验证的LLM保持一致,从而降低了培训成本并提高了灵活性。我们的结果表明,MatterChat显着提高了材料性质预测和人类相互作用的性能,超过了GPT-4等通用LLM。我们还证明了它在更先进的科学推理和逐步材料合成等应用中的有用性。
摘要:除了(Little)Openai可能对我们隐瞒的内容外,我们都知道(粗略地)大型语言模型(LLM)(例如ChatGpt)工作(其庞大的文本数据库,统计数据,矢量表示和大量参数,下一个单词培训等)。但是,我们当中没有人能说(衷心地),我们对Chatgpt所证明的能力对这些资源的作用并不感到惊讶。这甚至驱使我们中的一些人得出结论,Chatgpt实际上理解了。它不正确。,但我们了解它如何做能做的事情也不正确。我会建议一些有关良性“偏见”的预感 - 在LLM量表上出现的会议约束可能会帮助ChatGpt的表现比我们预期的要好。这些偏见是语言本身,LLM量表的本质上固有的,它们与Chatgpt缺乏的是紧密相关的,这是直接的感觉运动接地,可以将其单词与引用者及其命题联系起来。这些收敛性偏见与(1)间接言语基础在直接感觉运动基础上的寄生虫有关,(2)语言定义的循环,(3)语言生产和理解的“镜像”,(4)在LLM量表上以LLM量表的命题中的标志性,((5)人类的“人类知识)”,也许是“类别”的“类别”。乔姆斯基的猜想是关于思想定律。博览会将以与Chatgpt-4的对话形式。
1。AI的人类写作模仿:生成的AI模型经过训练,可以产生与人写作非常相似的文本。这使得探测器很难区分AI生成的和人编写的内容,尤其是当AI输出精心制作时。2。上下文依赖性:AI检测器通常依赖于上下文依赖的模式或功能。人类撰写的文本可以表现出相似的模式或样式,因此准确识别AI生成的内容的挑战。3。微妙的差异:虽然AI可能会产生带有明显符号的文本(例如某些重复模式或不自然的措辞),但这些差异通常是微妙的,并且在所有类型的内容中都不一致。这两个会导致误报(AI标记为人写)和假否定性(AI内容未被发现)。4。不断发展的AI模型:随着生成AI模型的改善,它们变得更好地避免了训练探测器的模式。这为检测器创造了一个移动的目标,该目标可能难以快速适应新的AI写作技术。5。缺乏通用特征:没有单一的万无一失的指标AI生成的内容。ai可以用各种样式,音调和结构编写,从而使探测器很难依靠固定的,普遍可识别的特征。6。培训数据偏差:AI检测器通常是在特定数据集上训练的,如果数据不涵盖广泛的AI写作可能性,则检测器可能无法识别AI生成的文本的某些样式或变体。7。连贯但浅的输出:AI可以产生语法正确且相干的文本,但有时缺乏深刻的理解或细微差别。检测器可能很难将这种类型的浅但合理的文本与真实的人写作区分开。