1卢森堡卫生研究院(LIH),卢森堡卢森堡2号癌症研究系Norlux神经肿瘤学实验室2 Luxembourg,卢森堡Esch-Sur-Alzette 4 Neuro-Immumunology小组,卢克斯莫堡卫生研究院(LIH),卢森堡5多组学数据科学研究小组,卢森堡医学院,卢森堡校立,卢森堡研究所,卢克斯姆堡研究小组,卢森堡研究所,卢克斯堡,卢森堡,卢克斯堡,卢克斯堡,卢克斯堡translation transform flatferent,卢克斯姆堡(Luxembourg)研究很高健康,卢森堡的埃奇 - 塞尔 - 阿尔Zette,7溶瘤病毒免疫治疗学实验室,德国癌症研究中心,海德堡,德国,德国
•技术套餐和咨询服务增强了香草,chiltepín和西红柿的生产。•它的存在有助于建立38个合作社,从而使280多家生产者受益。Five years after its inauguration, the Centro de Innovación e Integración de Tecnologías Avanzadas (CIITA) Unidad Veracruz of the Instituto Politécnico Nacional (IPN) stands as clear proof of the positive impact of science and technology on economic and social development, not only regionally in Papantla, where it is located, but throughout the entire state of Veracruz.技术创新是Ciita Veracruz的关键要素,其在农业部门的好处是无数的。这些进步是由IPN专家根据与生产者和技术创新的合作开发的公式产生的。这种方法导致了重大的经济和社会利益,植根于中心与生产者和合作社合作提供的广泛服务。Ciita Veracruz主任Francisco Javier PicasoCastañeda强调,IPN仍致力于推动发展,并指出该中心已成为农业影响的全州范围基准。他强调,通过技术包和咨询服务,香草的生产有所增加。具体来说,1,200公斤的香草从快速干燥技术中受益,这将处理时间从3-4个月大幅减少到仅48小时,从而阻止了生产者的年收成。也使用了相同的技术来加速胡椒的干燥过程。
这种常见祖细胞库的关键特征是:敲除β2微球蛋白的敲除,以消除HLA-I表达(CD8 T细胞逃避); CIITA敲除消除HLA-II表达(CD4 T细胞逃避); HLA-E和HLA-G(NK细胞逃避)的敲击蛋白; IL-15/IL-15RA的敲击素以增强墨水持久性;单纯疱疹病毒酪氨酸激酶(HSV-TK)作为Ganciclovir响应性安全开关; psma胞外域的敲击蛋白可以使细胞追踪;高亲和力CD16的敲击蛋白与治疗性抗体结合时增强ADCC; NKG2D的敲击蛋白通过识别胁迫配体来增强肿瘤杀死; NKG2A和CD70的敲除可能增强细胞适应性/功能。工程的共同祖先将为多个墨水产品候选者提供起始材料。
该文件包含就《医疗保险药品价格谈判计划:指导草案、社会保障法第 1191-1198 节 2027 年初始价格适用年的实施以及制造商在 2026 年和 2027 年实现最高公平价格 (MFP)》收到的总共 145 封评论信中的 120 封独特评论信。对于不代表组织的个人提交的评论信,CMS 已出于隐私目的删除了个人的姓名、地址和联系信息。任何组织或学术机构均未取消识别。CMS 完整编辑了 CiiTA, Inc. 作为评论信提交的 PowerPoint,因为该 PowerPoint 包含商业专有和机密材料。此外,还选择了一封评论信来代表任何实质性重复的评论(例如,作为协调宣传活动的一部分提交的评论)。
摘要 背景 过继细胞疗法,例如嵌合抗原受体 (CAR)-T 细胞疗法,已改善血液系统恶性肿瘤患者的治疗效果。目前,FDA 批准的六种 CAR-T 细胞产品中有四种使用基于 FMC63 的 α CD19 单链可变片段(源自鼠单克隆抗体)作为细胞外结合结构域。临床研究表明,患者对自体 CAR-T 细胞的非自身 CAR 成分或同种异体 CAR-T 细胞的供体特异性抗原产生体液和细胞免疫反应,这被认为可能会限制 CAR-T 细胞的持久性和重复给药的成功率。 方法 在本研究中,我们实施了一种一次性方法,通过表达与抗原加工相关的转运蛋白的病毒抑制剂 (TAPi) 结合编码针对 II 类 MHC 转录激活因子 (CIITA) 的 shRNA 转基因,同时减少抗原呈递和两类主要组织相容性复合体 (MHC) 的表面表达,从而防止对工程 T 细胞的排斥。通过流式细胞分析和混合淋巴细胞反应试验在体外筛选出最佳组合,并在白血病和淋巴瘤小鼠模型中在体内进行验证。使用患者样本在自体环境中评估功能,并使用同种异体小鼠模型在同种异体环境中评估功能。结果 Epstein-Barr 病毒 TAPi 和靶向 CIITA 的 shRNA 的组合可有效降低 α CD19“隐形”CAR-T 细胞中的细胞表面 MHC I 类和 II 类,同时保留体外和体内抗肿瘤功能。使用先前接受自体 α CD19 CAR-T 细胞治疗的患者的 T 细胞进行的混合淋巴细胞反应试验和 IFN γ ELISpot 试验证实,表达隐形转基因的 CAR T 细胞可逃避同种异体和自体抗 CAR 反应,这在体内得到了进一步验证。重要的是,我们注意到接受过多次 CAR-T 细胞输注的患者中存在抗 CAR-T 细胞反应,而这种反应在体外用含有隐形转基因的自体 CAR 进行再刺激时会降低。结论总之,这些数据表明,所提出的隐形转基因可能会降低自体和同种异体细胞疗法的免疫原性。此外,患者数据表明,重复剂量的基于 FMC63 的自体 α CD19 CAR-T 细胞可显著增加这些患者的抗 CAR T 细胞反应。
摘要 细胞因子介导的宿主免疫激活是控制病原体的核心。干扰素-γ (IFN γ ) 是保护性免疫中的关键细胞因子,可诱导主要组织相容性复合体 II 类分子 (MHCII) 以扩增 CD4 + T 细胞活化和效应功能。尽管 IFN γ 诱导的 MHCII 起着核心作用,但其动态调节尚不明确。我们在小鼠巨噬细胞中使用全基因组 CRISPR-Cas9 筛选,确定了控制 MHCII 表面表达的基因。机制研究揭示了两条平行的 IFN γ 介导的 MHCII 控制途径,这两条途径需要多功能糖原合酶激酶 3 β (GSK3 β ) 或介导复合物亚基 16 (MED16)。这两种途径控制着 IFN γ 反应的不同方面,并且对于 IFN γ 介导的 MHCII 转录激活因子 Ciita 的诱导、MHCII 表达和 CD4 + T 细胞活化必不可少。我们的研究结果确定了之前未被重视的 MHCII 表达调节,这种调节对于控制 CD4 + T 细胞反应必不可少。
尽管通过使用免疫检查点抑制剂,在癌症的免疫疗法中取得了相关进展,部分地是通过治疗疫苗,但不幸的是,两种方法都揭示了大多数肿瘤类型的局限性。特别是,由于这些疫苗在刺激和维持MHC Class-I限制的肿瘤特异性CD8+ CD8+ ector ector细胞(CTL)方面的有限效应,使用MHC I类肿瘤特异性肽使用的疫苗接种策略遇到了关键的困难。Our working hypothesis prioritizes, instead, the triggering of tumor-specific MHC class II (MHC-II)-restricted CD4+ T helper (TH) cells, as these cells, hierarchically, are fundamental to both initiate all adaptive immune responses and maintain the proliferation and cytolytic activity of CTL, the terminal effectors of anti-tumor immunity.因此,在我们看来,如果没有强烈和持续的肿瘤特异性细胞激活,免疫治疗疫苗接种方法的成功将受到限制。我们的方法基于先前的实验结果,是为了使肿瘤细胞MHC-II阳性,然后替代其对TH细胞的肿瘤抗原的替代抗原呈递细胞(APC)。这是通过将在我们的实验室中发现的MHC-II反式激活器(CIITA)转移到肿瘤细胞中获得的。在我的研讨会上,将处理一个特殊情况,涉及胶质母细胞瘤,这是一种仍然无法治疗的肿瘤。我将展示我们的策略如何提供新知识,以增加和维持针对肿瘤的适应性免疫反应,并希望能为在临床环境中改善其治疗的新型治疗工具。
碱基编辑器是一类有前途的下一代基因组编辑技术,既可以精确纠正致病的遗传变异,又可以同时安全地敲除多个基因靶标。Pin-point 碱基编辑平台是一个模块化组装的 DNA 结合 Cas 和 DNA 修饰脱氨酶组件,它们通过序列靶向向导 RNA (gRNA) 中编码的适体连接。碱基编辑器应用中的一个主要挑战是准确地通过计算机预测给定 Cas 和脱氨酶组合在目标序列上的编辑效率和特异性。Pin-point 碱基编辑系统的模块化允许创建大量配置,这些配置的 PAM 特异性、序列编辑偏好和编辑效率可能有所不同。为了促进和加速基于 Pin-point 平台的应用程序开发,我们创建了一个自定义工具来设计 gRNA 以靶向感兴趣的基因并安装碱基转换,包括那些会引入过早的终止密码子或破坏剪接位点以敲除目标基因的转换。此外,我们进行了大规模并行细胞筛选,以分析两种不同的 Pin-point 碱基编辑器配置的编辑活动,其中 gRNA 靶向数千个目标序列。我们使用从筛选中获得的数据构建了每种配置观察到的编辑结果的模型。我们应用这些模型对设计用于产生多个临床相关基因靶标(包括 CIITA 和 PCSK9)功能性敲除的 gRNA 进行排序。在分析了计算机预测与 gRNA 的细胞性能之间的相关性后,我们确认模型预测与 Pin-point 碱基编辑平台观察到的编辑效率准确相关。自定义 gRNA 设计工具和预测模型的结合导致识别出一种新型、高效的 gRNA,它能够通过破坏剪接位点来敲除 PCSK9,并且我们确认了文献中先前报道的其他 gRNA 设计的预测性能。我们的 gRNA 设计规则是使用我们广泛的基于细胞的性能数据集得出的,从而创建了可靠的自定义工具来优先考虑 gRNA 并选择具有最高编辑效率的 gRNA。
基础编辑者是一类有希望的下一代基因组编辑技术,具有精确纠正引起疾病的遗传变异的潜力,并同时安全地敲除多个基因靶标。在一种配置中,PIN点碱基编辑平台是DNA结合Cas的模块化组件和DNA修饰的脱氨酶成分,通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件。通常,基本编辑器在应用中的应用中,可以准确地预测CAS和脱氨酶组合的目标序列的编辑效率和特异性。PIN点底座编辑系统的模块化允许创建大量配置,它们的PAM特异性,序列编辑偏好和编辑效率可能会有所不同。为了促进和加速基于PIN点平台的应用程序的开发,我们创建了一种定制工具来设计GRNA,以针对感兴趣的基因并安装基本转换,包括那些将引入早产停止密码子或破坏剪接站点以敲除目标基因的基础转换。此外,我们进行了一个大规模的平行细胞屏幕,以分析两个不同的针对点基本编辑器配置的编辑活性,其GRNA针对数千个目标序列。我们使用从屏幕获得的数据来构造每种配置的观察到的编辑结果模型。我们将这些模型应用于旨在产生多个临床上相关基因靶标的功能敲除(包括CIITA和PCSK9)的功能敲除。分析了IN硅预测与GRNA基于细胞的性能的相关性后,我们确认该模型预测与Pin-Point Base编辑平台观察到的编辑效率相关。自定义GRNA设计工具和预测模型的组合导致了一种新型,高效的GRNA来识别能够通过破坏剪接站点来敲除PCSK9的识别,我们证实了文献中先前报道的其他GRNA设计的预测性能。使用我们基于细胞的广泛性能数据集告知我们的GRNA设计规则,创建可靠的自定义工具来优先考虑GRNA并选择具有高编辑效率的人。