RNA 测序技术的最新进展使我们能够发现一种新的 RNA 物种,即环状 RNA(circRNA;图 1)。环状 RNA 已被确定为自然存在的广泛且多样的内源性非编码 RNA 家族,它们可能调节哺乳动物的基因表达(Huang 等人,2017 年),并因神经退行性疾病和癌症而受到干扰(Chen 等人,2016 年)。它们是异常稳定的 RNA 分子,具有细胞类型或发育阶段特异性的表达模式。已鉴定出数千种环状 RNA,其中大多数研究测序了大脑和疾病组织样本。然而,迫切需要了解环状 RNA 的表达模式及其在外周、非大脑、健康组织中的特性,不仅在人类中,而且在用作复杂疾病研究实验模型的其他哺乳动物物种中也是如此。为了应对这一挑战,该项目旨在研究来自三种哺乳动物物种(包括人类、猕猴和小鼠)的十种不同外周组织类型的环状转录组景观。
胃癌是全球第四大常见恶性肿瘤,也是癌症相关死亡的第三大原因。晚期胃癌患者可显著受益于化疗,包括阿霉素、铂类药物、5-氟尿嘧啶、长春新碱和紫杉醇以及靶向治疗药物。然而,原发性耐药或获得性耐药最终导致胃癌患者治疗失败和预后不良。胃癌耐药的详细机制已被揭示。有趣的是,不同的非编码 RNA (ncRNA),如微小 RNA (miRNA)、长链非编码 RNA (lncRNA) 和环状 RNA (circRNA),与胃癌发展密切相关。多种证据表明,ncRNA 在胃癌对化疗药物和靶向治疗药物的耐药性中起着至关重要的作用。在这篇综述中,我们系统地总结了 ncRNA 影响胃癌耐药性的新兴作用和详细分子机制。此外,我们提出了 ncRNA 作为胃癌新治疗靶点和预后生物标志物的潜在临床意义。
基于微小 RNA (miRNA) 的疗法对癌症治疗大有希望,但表达多变性、脱靶效应和临床效果有限等挑战已导致许多临床试验退出。本综述通过研究 miR-21、miR-34 和 miR-155 探讨了基于 miRNA 的疗法所面临的挫折,强调了它们的功能复杂性、脱靶效应以及有效提供这些疗法的挑战。此外,它还强调了为克服这些挑战而在递送方法、联合疗法和个性化治疗方法方面取得的最新进展。本综述强调了涉及 miRNA 的复杂分子网络,特别是它们与其他非编码 RNA(例如长链非编码 RNA (lncRNA) 和环状 RNA (circRNA))的相互作用,强调了 miRNA 在癌症生物学和治疗策略中的关键作用。通过解决这些障碍,本综述旨在引导未来的研究利用 miRNA 疗法的潜力有效靶向癌症途径,增强抗肿瘤反应,并最终改善精准癌症治疗的患者预后。
•人类基因组的结构和功能特征•表达调控中的顺式传播相互作用。一般和特定的转录因子。用于研究的技术:用于研究差异表达的微阵列和Q-RT-PCR•表观遗传机制。DNA甲基化,质量修饰,染色质重塑复合物,LCR,表观遗传静音。Bisolfito方法用于研究DNA甲基化状态。•用于大规模测序核酸测序的第二代和第三代技术•微生物群落的基因组分析。靶标元基因组,元基因组shot弹枪和功能。•人类微生物瘤:与营养和健康的相关性•OMIC科学:定义和目标。营养/营养学:多态性与营养与食物对基因表达的影响之间的关系。基因组适应饮食。依赖配体的转录因子。神经退行性病理学的营养素和表观基因组学。营养表观基因组学:中间代谢,碳原子的代谢和表观遗传机制。药物遗传学/药物基因组学:影响对药物反应的基因,遗传环境相互作用(GXE)。•基因表达的转移后调节。功能和替代剪接调节机制。•RNA调节剂:longncrna,pirna,circrna,mirna,sirna。mirna
缩写:Ψ,假基因;ceRNA,竞争内源性RNA;MRE,微小RNA反应元件;miRNA,微小RNA;TSG,肿瘤抑制基因;mRNA,信使RNA;PP,加工假基因;UP,未加工假基因;UPG,单一假基因,RT,逆转录转座;LINE,长散在核元件;siRNA,短干扰RNA;circRNA,环状RNA;AD,阿尔茨海默病;FTH1,铁蛋白重链;;PTENP1,PTENP1假基因;HMGEC,人乳腺上皮细胞;CRDP,环状RNA衍生的假基因;;HMGA1P,高迁移率族AT-Hook 1假基因;RBP,RNA结合蛋白;;lncRNA,长非编码RNA;CRC,染色质重塑复合物;ERK,细胞外信号调节激酶; BRAF,B-Raf原癌基因;PI3K,磷酸肌醇3-激酶;AKT,丝氨酸/苏氨酸激酶;MAPK,丝裂原活化蛋白激酶;qRT-PCR,定量逆转录聚合酶链反应;FISH,荧光原位杂交;ceRNA假说,竞争性内源性RNA假说;PTPN11,蛋白酪氨酸磷酸酶,非受体型11;NDs,神经退行性疾病;EGFR,上皮生长因子受体;TNF,肿瘤坏死因子;早期生长反应蛋白1(EGR1),HMGA,高迁移率族at-hook 1基因;PMOM,精准医疗肿瘤学市场;scRNA-seq,单细胞RNA测序;ISH,原位杂交;RNAi,RNA干扰;LNP,脂质纳米颗粒; BCL,B 细胞淋巴瘤;AI,人工智能;IP,免疫沉淀;RIP,RNA 免疫沉淀;HRISH,高分辨率原位杂交
摘要:乳腺癌是全球女性癌症死亡最常见的原因之一。特别是三阴性乳腺癌(TNBC)代表了最具侵略性的乳腺癌亚型,因为它的特征是没有分子靶标,因此使其成为孤儿的恶性肿瘤类型。必须发现新分子可药靶标的是提高治疗成功。在这种情况下,非编码RNA代表了调节癌症的机会。它们是显然没有蛋白质编码潜力的RNA分子,已经证明已经在细胞中发挥关键作用,参与了不同过程,例如增殖,细胞周期调节,凋亡,迁移,迁移和疾病,包括癌症。可以肯定的是,它们可以用作未来TNBC个性化疗法的靶标。此外,非编码RNA的独特特征使它们成为可靠的生物标志物来监测癌症治疗,从而监测复发或化学抗性,这是TNBC中最具挑战性的方面。在本综述中,我们专注于长期非编码RNA(LNCRNA)和循环RNA和圆形RNA(CIRCRNA)的致癌或造成抑制作用的作用,主要参与TNBC,强调了它们的作用方式,并将其潜在的作用描述为潜在的生物标志物和/或针对新的非编码RNNA-NORDECED READICTRICTICTICTRAICT。
非编码RNA(ncRNA),包括微小RNA(miRNA)、小干扰RNA(siRNA)、长链非编码RNA(lncRNA)和环状RNA(circRNA),占据了人类转录组的重要组成部分。这些RNA因无法编码功能性蛋白质而被视为“垃圾”。然而,从过去20年的研究中可以明显看出,这些ncRNA在转录和转录后水平的基因调控中起着关键作用,并控制各种生物途径、细胞生理、发育过程和疾病发病机制,包括癌症。最近,这些ncRNA因其特异性表达和在各种癌症的诊断、预后和治疗中的良好应用而受到广泛关注(Piergentili et al.,2022;Uppaluri et al.,2023)。在本研究主题中,我们很高兴能呈现四篇出色的文章,这些文章既涵盖原创研究,也涵盖评论,讨论了该领域的最新进展,重点关注 ncRNA 在癌症的发展、诊断和治疗以及抗癌疗法耐药性中的作用。癌症是全球负担,2020 年有 1000 万人死亡,肺癌是最常见的癌症,占新病例总数的 12.4% 和癌症死亡总数的 18.7%。大多数肺癌患者由于缺乏早期临床症状而被诊断出癌症已到中晚期。曹等人。
结直肠癌 (CRC) 是世界第三大癌症,转移性 CRC 大大增加了全球癌症相关的死亡人数。转移涉及许多在分子水平上受到严格控制的复杂机制,而转移是 CRC 患者死亡的主要原因。最近,人们已经清楚,外泌体(由非肿瘤细胞和肿瘤细胞释放的细胞外小囊泡)在肿瘤微环境 (TME) 中起着关键的通讯介质作用。为了促进 TME 和癌细胞之间的通讯,非编码 RNA (ncRNA) 起着至关重要的作用,被认为是基因表达和细胞过程(如转移和耐药性)的有效调节剂。NcRNA 现在被认为是基因表达和许多癌症标志(包括转移)的有效调节剂。外泌体 ncRNA,如 miRNA、circRNA 和 lncRNA,已被证明会影响多种导致 CRC 转移的细胞机制。然而,将外泌体 ncRNA 与 CRC 转移联系起来的分子机制尚不清楚。本综述重点介绍了外泌体 ncRNA 在 CRC 转移性疾病进展中发挥的重要作用,并探讨了 CRC 转移患者可以选择的治疗方案。然而,外泌体 ncRNA 治疗策略开发仍处于早期阶段;因此,需要进一步研究以改进给药方法并找到新的治疗靶点,以及在临床前和临床环境中确认这些疗法的有效性和安全性。
膀胱癌(BCA)是影响男性的最常见的恶性肿瘤之一。致癌转录因子在人类癌症进展中起重要调节剂。在我们的研究中,我们旨在构建人工循环的非编码RNA(aciRCRNA),这些功能单元由三个功能单元组成,这些功能单位模仿CRISPR-CAS系统并阐明其在膀胱癌中的治疗作用。此外,还进行了调节aciRCRNA和CRISPR-DCAS系统之间基因表达的效率的比较。我们连接了TFS适体的cDNA序列,并构建了一个circrna。为了证明平台的实用性,选择了β -catenin和nf -κB作为功能靶标,而T24和5637细胞系作为测试模型。实时定量PCR(QPCR),双荧光素酶测定和相关表型测定法被用于检测相关基因的表达和治疗效果。为了阐明ACIRCRNAS的功能,采用了能够检测β-蛋白酶和NF-κB表达的荧光素酶载体来评估aciRCRNA对β-Catenin和NF-κB的抑制作用。因此,确定了涉及acircrna-3的最佳组合。接下来,使用QPCR分析来评估aciRCRNA处理后靶标基因的相对表达水平。使用C-Myc和Cyclin D1的表达来确定β-蛋白酶的功能,而BCl-XL和TRAF1用于确定NF-κB的功能。ACIRCRNA抑制了BCA细胞中的β -catenin和NF -κB相关的信号传导。CD63-Hur融合蛋白用于将aciRCRNA加载到外泌体中。结果表明,aciRCRNA可以抑制目标转录因子的活性,并且抑制作用优于cripsr-dcas9-krab。此外,功能实验表明,膀胱细胞中阿西尔纳的转染导致增殖减少,凋亡增强和抑制迁移。总而言之,与CRISPR-DCAS9-KRAB系统相比,我们的合成基因装置表现出抗肿瘤调节能力,并显示出更高的肿瘤抑制效率。因此,我们的设备为癌症治疗提供了一种新的策略,可能是癌细胞的有用策略。
糖尿病(DM)是一系列广泛的代谢功能障碍,其特征是胰岛素抵抗,胰岛素分泌不足或过度胰高血糖素分泌引起的高血糖症(1)。2021年全球糖尿病患病率估计为10.5%(5.366亿人)(Li等人)。心血管疾病(CVD)通常伴随DM,代表了全球发病率和死亡率的主要原因(2)。越来越多的证据表明,非编码RNA(NCRNA)在DM和CVD的启动和进展中的关键作用(3,4)。NCRNA代表了一组不同的分子,这些分子被证明可以调节基因表达,并且在人类生长和发育,细胞增殖,凋亡和代谢等生理过程中具有至关重要的作用(5)。NCRNA的主要类别是microRNA(miRNA),长的非编码RNA(LNCRNA)和圆形RNA(CIRCRNA)。由于它们通过调节各种基因的表达来维持生理稳态的作用,miRNA和LNCRNA吸引了与DM和CVD中潜在的治疗靶标的生物标志物相当大的科学兴趣(3)。在本研究主题中,作者通过提供了在这些条件下涉及的各种调节性NCRNA的全面和最新的摘要,解决了全球DM和CVD稳步增加的问题。此外,作者还讨论了NCRNA作为糖尿病和CVD的预后生物标志物和治疗工具。该主题收到了六篇论文,包括五篇文章和一份评论。也是Li等。因此,Bielska等人。在DM中良好确定了导致心脏病发展的不同miRNA和血小板激活之间的联系。从基因表达综合的数据中提出了数据,表明在各种类型糖尿病中差异表达的miRNA的靶基因之间存在密切的联系。然而,仍然需要确定特异性miRNA在缺血性心脏病(IHD)中的调节和功能。研究最近专注于发现循环的血清衍生的miRNA作为DM患者早期诊断和鉴定IHD风险的潜在生物标志物。使用一种新型技术,即识别差异IHD相关的miRNA表达的NCounter平台,发现六个miRNA(miR-615-3p,miR-3147,miR-3147,miR-1224-5p,mir-5196-,mir-5196-