简介 > 随着医学文献的出版量不断增加,人工智能 (AI) 逐渐被视为提高文献综述筛选效率的工具。1 > 美国国家健康与护理卓越研究所 (NICE) 最近的指导承认了人工智能在协助文献综述过程中的优势,强调了人工智能辅助流程在支持报销提交方面的进展。> AI 分类器通过对一组问题进行出版物二元分类,为 AI 筛选提供了一种替代方案。> AI 分类器不限于单一用途设置,可以应用于多个评审,并有可能迭代提高准确性。> 虽然有大量关于 AI 筛选的文献,但评估 AI 分类器及其与人类审阅者的可比性的证据有限。
摘要。量子计算机机器学习的最新进展主要得益于两项发现。将特征映射到指数级大的希尔伯特空间中使它们线性可分——量子电路仅执行线性运算。参数移位规则允许在量子硬件上轻松计算目标函数梯度——然后可以使用经典优化器来找到其最小值。这使我们能够构建一个二元变分量子分类器,它比经典分类器具有一些优势。在本文中,我们将这个想法扩展到构建多类分类器并将其应用于真实数据。介绍了一项涉及多个特征图和经典优化器以及参数化电路的不同重复的系统研究。在模拟环境和真实的 IBM 量子计算机上比较了模型的准确性。
摘要。目标:分类器传输通常伴随着数据集偏移。为了克服数据集偏移,必须应用在线策略。对于实际应用,必须考虑批量学习算法(如支持向量机 (SVM))的计算资源限制。方法:我们回顾并比较了几种使用 SVM 进行在线学习的策略。我们专注于通过不同的包含、排除和进一步的数据集操作标准来限制存储训练数据大小的数据选择策略。首先,我们对具有不同数据偏移的几个合成数据集上的策略进行了比较。其次,我们分析了使用 EEG 数据的不同传输设置的方法。在处理现实世界数据时,类别不平衡经常发生,例如在奇怪的实验中。这也可能是由数据选择策略本身造成的。我们通过评估两个新的平衡标准来分析这种影响。主要结果:对于不同的数据偏移,不同的标准是合适的。对于合成数据,将所有样本添加到考虑样本池中的表现通常比其他标准差得多。特别是,只添加错误分类的样本表现惊人地好。在这里,当其他标准选择不当时,平衡标准非常重要。对于传输设置,结果表明最佳策略取决于传输期间漂移的强度。添加所有样本并删除最旧的样本可获得最佳性能,而对于较小的漂移,仅添加潜在的 SVM 新支持向量就足够了,从而减少处理资源。意义:对于基于脑电图 (EEG) 模型的脑机接口,使用来自校准会话、先前记录会话甚至来自一个或多个其他受试者的记录会话的数据进行训练。学习模型的这种转移通常会降低性能,因此可以从在线学习中受益,在线学习可以像已建立的 SVM 一样调整分类器。我们表明,通过使用正确的数据选择标准组合,可以调整分类器并大大提高性能。此外,在某些情况下,可以通过使用特殊样本子集进行更新并保留一小部分样本来训练分类器,从而加快处理速度并节省计算量。
Features n % Median Mean Standard deviation Chemotherapy cycles 3439 100 General Cancer type Breast cancer 1315 38 Lung cancer 890 26 Colorectal cancer 1159 34 Other cancers 75 2 Stage 1 to 3 1927 4 1512 Involved systems number* 0 0.8 1.1 Gender Female 1811 53 Male 1628 47 Age 55 55.1 11.4 ECOG performance status 1 0.7 0.7 Coronary disease No 3133 91 Yes 306 9慢性阻塞性肺疾病(冷)否3252 95是187 5放疗3372 98在3372 98之前没有接受67 2先前的化疗NO 1922 56是1517 44治疗治疗方法作为住院NO 3240 94是3240 94是3240 94 YES 199 6 CSF YES 199 6 CSF否2543 74 YES 896 26 26 26 26 26 NO 311 NO 311 NO 311 11 11 1117剂量重新降差 neutropenia No 3211 93 Yes 228 7 Febrile neutropenia after chemotherapy No 3306 96 Yes 133 4 Drug number** 1 336 10 2 1644 48 3 1076 31 4 382 11 5 1 0 Regimen risk*** 1 938 27 2 2157 63 3 344 10 Cycle no on current protocol 3 2.8 1.4 Laboratory LDH (IU/ml) 343 370 235 ALT (IU/mL)18 22 20 20肌酐(mg/dl)0.71 0.76 0.22淋巴细胞计数(x1000/mm3)1.7 1.7 1.9 1.3白蛋白(mg/dl)4.2 4.2 4.2 0.4
CSUSB Scholarworks研究生办公室将该项目带给您免费和公开访问。已被CSUSB Scholarworks的授权管理人所接受,将其纳入电子论文,项目和论文。有关更多信息,请联系Scholarworks@csusb.edu。
传染病的扩散强调了预防措施的重要性,面罩的使用是减轻空中传播的关键策略。在这种情况下,计算机视觉技术的集成提供了一种技术解决方案,用于监视面罩依从性。本摘要提出了一项研究,该研究重点是实施级联分类器技术,以进行自动面罩检测。这项研究的主要目的是评估级联分类器技术在识别戴着戴面膜或不戴上面罩的个体方面的功效。通过利用机器学习算法和对象检测原则,该研究旨在开发一个可靠,高效的系统,用于实时面罩检测。该研究采用了一个数据集,其中包括各种环境中有或没有面罩的各种环境中的不同图像。利用OPENCV库,对级联分类器技术进行了训练,以识别与口罩相关的独特模式。级联框架执行快速和连续过滤的能力被利用以准确检测面孔并评估面具的存在。该研究的结果证明了喀斯喀特分类器技术的成功实施,以实现面罩检测。训练有素的分类器在区分戴面膜和戴面具的个体时表现出值得称赞的精度,精确性和回忆。该系统展示了其在实时场景中运行的能力,从而有助于对公共空间的有效监视。
1. 简介。脑机接口是一种利用从大脑记录的信号为功能受损的个体提供通信和控制应用的系统。这项技术已经发展到现在正被能够从中受益的个人所使用。BCI 系统是一种快速发展的技术,涉及通过大脑活动控制外部设备的硬件和软件通信系统。BCI 技术的一个重要应用是帮助瘫痪患者等残疾人。BCI 为大脑提供了新的输出通道,这些通道依赖于大脑活动而不是周围神经和肌肉。BCI 已被研究了 20 多年。许多 BCI 使用非侵入性脑电图作为测量技术,并使用 P300 事件相关电位作为输入信号 (P300 BCI)。自 1988 年 Farwell 和 Donchin 首次使用 P300 BCI 系统进行实验以来,不仅数据处理得到了改进,而且刺激呈现也多种多样,并且开发和改进了大量应用程序 [1,2]。
通过模仿类似大脑的认知并利用并行性,超维计算 (HDC) 分类器已成为实现高效设备推理的轻量级框架。尽管如此,它们有两个根本缺点——启发式训练过程和超高维度——导致推理精度不理想且模型尺寸过大,超出了资源受限严格的微型设备的能力。在本文中,我们解决了这些根本缺点并提出了一种低维计算 (LDC) 替代方案。具体而言,通过将我们的 LDC 分类器映射到等效神经网络,我们使用原则性训练方法优化我们的模型。最重要的是,我们可以提高推理精度,同时成功地将现有 HDC 模型的超高维度降低几个数量级(例如 8000 对 4/64)。我们通过考虑不同的数据集在微型设备上进行推理来进行实验以评估我们的 LDC 分类器,并且在 FPGA 平台上实现不同的模型以进行加速。结果表明,我们的 LDC 分类器比现有的受大脑启发的 HDC 模型具有压倒性优势,特别适合在微型设备上进行推理。
通过模仿类似大脑的认知并利用并行性,超维计算 (HDC) 分类器已成为实现高效设备推理的轻量级框架。尽管如此,它们有两个根本缺点——启发式训练过程和超高维度——导致推理精度不理想且模型尺寸过大,超出了资源受限严格的微型设备的能力。在本文中,我们解决了这些根本缺点并提出了一种低维计算 (LDC) 替代方案。具体而言,通过将我们的 LDC 分类器映射到等效神经网络,我们使用原则性训练方法优化我们的模型。最重要的是,我们可以提高推理精度,同时成功地将现有 HDC 模型的超高维度降低几个数量级(例如 8000 对 4/64)。我们通过考虑不同的数据集在微型设备上进行推理来进行实验以评估我们的 LDC 分类器,并且在 FPGA 平台上实现不同的模型以进行加速。结果表明,我们的 LDC 分类器比现有的受大脑启发的 HDC 模型具有压倒性优势,特别适合在微型设备上进行推理。