在训练中,该工具对结果进行分类的准确率为 85%,而在使用新数据的最终测试中,该工具对哪些参与者患精神病的风险较高进行预测的准确率为 73%。根据结果,该团队认为,为被确定为临床高风险的人提供脑部 MRI 扫描可能有助于预测未来精神病的发病率。
抽象的微生物群落通常具有细菌,古细菌,质粒,病毒和微核生素的混合物。在相对的含量丰度中,Y等人与细菌进行了复杂的相互作用。Moreo Ver,病毒和质粒作为移动遗传元素,在水平基因转移和微生物种群中抗生素耐药性中起着重要作用。由于难以识别微生物群落中的病毒,质粒和微核生素,因此我们对这些次要类别落后于细菌和古细菌的差异。resse,将分类器被用来分开,将一个或多个次要类别与元基因组组件中的细菌和古细菌分开。ho w e v er,这些分类器通常是阶级不平衡问题,从而导致识别次要类别的精确度较低。在这里,我们开发了一个称为4CAC的分类器,能够从元素组组件中同时识别病毒,质粒,微核细胞和原核生物。4CAC使用se v er序列长度调整后的XGB OOST模型生成了初始的F我们的分类,并使用汇编图进一步对分类进行了分类。对所采用和真实的元基因组数据集进行的表明,在简短读取中,4CAC显然优于现有的分类器及其组合。 长期读取,除非少数类的丰度为very lo w,否则它也会显示出优势。 4CAC的运行速度比其他分类器快1-2个数量级。表明,在简短读取中,4CAC显然优于现有的分类器及其组合。长期读取,除非少数类的丰度为very lo w,否则它也会显示出优势。4CAC的运行速度比其他分类器快1-2个数量级。4CAC软件可从https://github.com/ shamir-lab/ 4cac获得。
和 WGS 数据中存在 A-to-G 证据或所有样本中均无 A-to-G 证据的位点被标记为阳性。相反,在 WT、SI 和 WGS 数据中存在 A-to-G 证据或所有样本中均无 A-to-G 证据的位点被标记为阴性。RNAseq 的最小深度为 50,WGS 的最小深度为 10。如果每个 A-to-G 变化至少有 3 个 G 支持或显示替换率 > = 1%,则将其视为阳性和阴性候选者。最终使用 REDItools [12, 19] 包中兼容 python3 的 AnnotateTable.py 脚本版本对阳性和阴性候选者进行注释。重复性位点
信号由在不同情况下组合的多个频率组成。离散小波变换 (DWT) 用于使用一系列高通/低通滤波器将信号分解为不同的频带。或者,使用功率谱密度 (PSD) 来获取频谱以及每个频率的功率分布。统计特征来自 DWT 和 PSD。然后,PCA 用于降维,并且在 SVM 分类器的情况下仅将得到的数据用于情绪分类,因为我们需要尽可能多的数据来进行深度学习。所有这些都是为了从分类器中提取最大性能并最小化所需的计算资源,然后将信号分解为组成频率并得出表征整个信号的相关统计特征。
脑震荡是全球关注的健康问题。尽管脑震荡发病率很高,但对这种弥漫性脑损伤的机制的全面了解仍然难以实现。然而,众所周知,脑震荡会导致严重的功能障碍;儿童和青少年受到的影响比成年人更大,恢复时间也更长;正在康复的人更容易遭受更多脑震荡,每次受伤都会增加长期神经和心理健康并发症的风险。目前,脑震荡管理面临两大挑战:没有客观的、临床认可的、基于大脑的方法来确定 (i) 运动员是否遭受了脑震荡,以及 (ii) 运动员何时康复。诊断基于临床测试和症状及其严重程度的自我报告。自我报告非常主观,症状只能间接反映潜在的脑损伤。在这里,我们介绍了一种基于深度学习的长短期记忆 (LSTM) 循环神经网络,该网络仅使用一段短暂(即 90 秒)的静息状态 EEG 数据样本作为输入,即可区分健康和急性脑震荡后青少年运动员。运动员在数据收集过程中既不需要执行特定任务,也不需要受到刺激,并且获取的 EEG 数据既没有经过过滤、清除伪影,也没有进行显式特征提取。LSTM 网络使用 27 名患有运动相关脑震荡的男性青少年运动员的数据进行训练和测试,以 35 名健康青少年运动员为基准。在严格测试期间,分类器始终以 > 90% 的准确率识别脑震荡,其整体中值曲线下面积 (AUC) 对应于 0.971。这是第一个仅依赖易于获取的静息状态 EEG 数据的高性能分类器实例。它是朝着开发一种易于使用、基于大脑的、在个体层面上自动进行脑震荡分类的方法迈出的关键一步。
简介:MANET是一项新兴技术,由于其能力在短时间内分析大量数据,因此在各种应用程序中获得了吸引力。因此,这些系统正面临各种安全漏洞和恶意软件攻击。因此,必须设计一个有效,积极和准确的入侵检测系统(IDS)来减轻网络中存在的这些攻击。大多数以前的ID都面临着诸如低检测精度,降低新型攻击形式的效率以及高误报率。目标:为了减轻这些关注点,提出的模型使用COOT优化和MANET的混合LSTM-KNN分类器设计了有效的入侵检测和预防模型,以提高网络安全性。方法:拟议的入侵检测和预防方法由四个阶段组成,例如对攻击节点的正常节点进行分类,预测不同类型的攻击,发现攻击的频率以及预防预防机制。初始阶段是通过COOT优化完成的,以找到从正常节点识别攻击节点的最佳信任值。在第二阶段,引入了混合LSTM-KNN模型,以检测网络中各种攻击。第三阶段执行以对攻击的发生进行分类。结果:最后阶段旨在限制系统中存在的攻击节点的数量。拟议方法的有效性通过一些指标验证,该指标的精度达到96%,执行时间为98%和35秒。结论:该实验分析表明,提出的安全方法有效地减轻了MANET的恶意攻击。
人工智能 (AI) 的情绪识别是一项具有挑战性的任务。已经进行了各种各样的研究,证明了音频、图像和脑电图 (EEG) 数据在自动情绪识别中的实用性。本文提出了一种新的自动情绪识别框架,该框架利用脑电图 (EEG) 信号。所提出的方法是轻量级的,它由四个主要阶段组成,包括:再处理阶段、特征提取阶段、特征降维阶段和分类阶段。在预处理阶段使用基于离散小波变换 (DWT) 的降噪方法,在此称为多尺度主成分分析 (MSPCA),其中使用 Symlets-4 滤波器进行降噪。可调 Q 小波变换 (TQWT) 用作特征提取器。使用六种不同的统计方法进行降维。在分类步骤中,旋转森林集成 (RFE) 分类器与不同的分类算法一起使用,例如 k-最近邻 (k-NN)、支持向量机 (SVM)、人工神经网络 (ANN)、随机森林 (RF) 和四种不同类型的决策树 (DT) 算法。所提出的框架使用 RFE + SVM 实现了超过 93% 的分类准确率。结果清楚地表明,所提出的基于 TQWT 和 RFE 的情感识别框架是使用 EEG 信号进行情感识别的有效方法。
INTRODUCTION: MANET is an emerging technology that has gained traction in a variety of applications due to its ability to analyze large amounts of data in a short period of time.因此,这些系统正面临各种安全漏洞和恶意软件攻击。Therefore, it is essential to design an effective, proactive and accurate Intrusion Detection System (IDS) to mitigate these attacks present in the network.Most previous IDS faced challenges such as low detection accuracy, decreased efficiency in sensing novel forms of attacks, and a high false alarm rate.OBJECTIVES: To mitigate these concerns, the proposed model designed an efficient intrusion detection and prevention model using COOT optimization and a hybrid LSTM-KNN classifier for MANET to improve network security.METHODS: The proposed intrusion detection and prevention approach consist of four phases such as classifying normal node from attack node, predicting different types of attacks, finding the frequency of attack, and intrusion prevention mechanism.初始阶段是通过COOT优化完成的,以找到从正常节点识别攻击节点的最佳信任值。在第二阶段,引入了混合LSTM-KNN模型,以检测网络中各种攻击。第三阶段执行以对攻击的发生进行分类。结果:最后阶段旨在限制系统中存在的攻击节点的数量。The proposed method's effectiveness is validated by some metrics, which achieved 96 per cent accuracy, 98 per cent specificity, and 35 seconds of execution time.结论:该实验分析表明,提出的安全方法有效地减轻了MANET的恶意攻击。
摘要 - 当今的商业格局的特点是竞争和动态,这将人力资源管理转变为组织的基本战略合作伙伴。员工营业额会带来影响生产力和知识管理的风险。本研究的重点是使用机器学习(ML)模型来预测员工的离职。在培训过程中,使用了一个由4410个记录和29个变量组成的数据集,在培训和评估十种模型的过程中,遵循了人工智能(AI)方法。调查结果表明,XG增强分类器(XGBC)和随机森林(RF)模型达到了最佳准确性和性能率,为98.8%和98.7%。Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following费率:分别为88.4%,85.4%,84%,82.2%,83.0%,83.0%,55.0%。最后,可以得出结论,模型在预测中是有用且有效的。建议在人力资源管理策略中实施实际实施,以进行主动干预。
心理运动意象 (MI) 是指在心理上执行运动任务(Milton 等人,2008 年,例如打网球或游泳)。此类任务可用于体育领域(Schack 等人,2014 年)或评估严重脑损伤患者的认知表现(Stender 等人,2014 年;Engemann 等人,2018 年),利用事件相关去同步 (ERD) 可靠地检测脑损伤患者的高级认知功能(Cruse 等人,2011 年、2012b 年)。可靠地检测健康人的 MI 任务表现对于诊断工具评估无法对任务做出公开反应的脑损伤患者的隐性意识是必不可少的。在一项关于心理 MI 的里程碑式研究( Goldfine 等人,2011 )中,作者证明,所有健康对照组的脑电活动都有意识地调节,并与活跃心理或静息状态的时间锁定在一起。但这些调节是不一致的。因此,我们得出结论,在测试健康人时,即在考虑患有严重脑损伤的患者之前,是否有可能可靠地区分心理 MI 范式中的活跃状态和静息状态,这一点值得担忧。从技术上讲,稳定的心理 MI 大脑状态的检测似乎高度依赖于所使用的信号处理、分类程序和统计分析,正如对心理 MI 数据的重新分析( Henriques 等人,2016 )中所报告的那样。因此,在这项工作中,我们重新审视了健康个体中 MI 范式的潜力,并研究了四个不同的研究问题(RQ)。我们首先研究定量分析 EEG 数据时的两个非常关键的问题:伪影的识别和剔除以及电极空间的选择。由经过培训的研究人员对 EEG 信号进行目视检查,并手动去除充满伪影的信号周期,是从记录中去除受污染通道(Cruse 等,2011、2012a)或尾迹(Cruse 等,2012b)的常用方法。这种伪影剔除方法可以应用于明显的伪影,如眨眼或运动,但肌源性活动往往与感兴趣的大脑活动(McMenamin 等,2010)混合在一起,因此无法用这种策略从信号中去除。独立成分分析(ICA)是分离肌源性和大脑活动的有力工具。ICA 将数据分解为独立成分,然后通过目视检查将其分类为肌源性或真正的大脑活动。然而,受过训练的专家的错误分类可能是导致 ICA 性能有限的原因(Olbrich 等人,2011 年)。大约三分之一的 EEG 分类研究使用手动伪影清除,然后不进行伪影清除,并且