由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
1(助理教授),CSE。 Teegala Krishna Reddy工程学院海得拉巴1(助理教授),CSE。Teegala Krishna Reddy工程学院海得拉巴
脑机接口(BCI)解读人脑在意识活动过程中的生理信息,建立大脑与外界之间的直接信息传输通道。脑电图(EEG)作为最常见的非侵入式BCI模式,在BCI的情绪识别中起着重要作用;然而,由于EEG信号的个体差异性和非平稳性,针对不同受试者、不同会话和不同设备构建基于EEG的情绪分类器是一个重要的研究方向。领域自适应利用来自多个领域的数据或知识,专注于将知识从源域(SD)转移到目标域(TD),其中EEG数据可能来自不同的受试者、会话或设备。在本研究中,提出了一种新的领域自适应稀疏表示分类器(DASRC)来解决基于EEG的跨域情绪分类问题。为了减少域分布的差异,利用局部信息保留标准将来自SD和TD的样本投影到共享子空间中。在投影子空间中学习一个通用的领域不变字典,从而在 SD 和 TD 之间建立内在联系。此外,还利用主成分分析 (PCA) 和 Fisher 标准来提升学习字典的识别能力。此外,还提出了一种优化方法来交替更新子空间和字典学习。CSFDDL 的比较表明,该方法对于跨受试者和跨数据集的基于 EEG 的情绪分类问题具有可行性和竞争性性能。
1 CAS关键行为科学,心理学研究所,中国北京; 2中国科学院心理学系,中国北京; 3中国北京的北京语言与文化大学认知科学中心; 4上海上海神经外科临床中心Fudan大学神经外科医院神经外科系; 5中国杭州大学医学院第一附属医院放射学系; 6国际大数据抑郁症研究中心(IBRCD),中国科学院心理学研究所,中国北京; 7中国科学院心理学研究所,中国北京的磁共振成像研究中心。 *电子邮件:ycg.yan@gmail.com。 **准备本文的数据是从阿尔茨海默氏病神经影像倡议(ADNI)数据库(adni.loni.usc.edu)获得的。 因此,ADNI中的调查人员为ADNI和/或提供数据的设计和实施做出了贡献,但没有参与本报告的分析或撰写。 可以在:http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/adni_acknowledgement_list.pdf上找到ADNI调查人员的完整列表。1 CAS关键行为科学,心理学研究所,中国北京; 2中国科学院心理学系,中国北京; 3中国北京的北京语言与文化大学认知科学中心; 4上海上海神经外科临床中心Fudan大学神经外科医院神经外科系; 5中国杭州大学医学院第一附属医院放射学系; 6国际大数据抑郁症研究中心(IBRCD),中国科学院心理学研究所,中国北京; 7中国科学院心理学研究所,中国北京的磁共振成像研究中心。*电子邮件:ycg.yan@gmail.com。**准备本文的数据是从阿尔茨海默氏病神经影像倡议(ADNI)数据库(adni.loni.usc.edu)获得的。因此,ADNI中的调查人员为ADNI和/或提供数据的设计和实施做出了贡献,但没有参与本报告的分析或撰写。可以在:http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/adni_acknowledgement_list.pdf上找到ADNI调查人员的完整列表。
在这项研究中,我们提出了使用多平面和多层跨前(M3T)网络的三维医学图像分类器,以在3D MRI图像中对阿尔茨海默氏病(AD)进行分类。提出的网络协同委托3D CNN,2D CNN和变压器用于准确的AD分类。3D CNN用于执行本机3D表示学习,而2D CNN用于利用大型2D数据库和2D代表学习的预训练权重。使用具有感应性偏置的CNN网络有效地提取局部大脑中与AD相关的异常的信息信息。跨前网络还用于获得CNN后多平面(轴向,冠状和矢状)和多切片图像之间的注意力关系。也可以使用不感应偏置的变压器学习分布在大脑中较大区域的差异。在此期间,我们使用了来自阿尔茨海默氏病神经影像学计划(ADNI)的训练数据集,该计划总共包含4,786 3D T1加权MRI图像。对于有效数据,我们使用了来自三个不同机构的数据集:澳大利亚成像,生物标志物和生活方式旗舰研究(AIBL)(AIBL),开放访问Imaging研究(OASIS)的开放访问系列(OASIS)以及来自培训数据集中的一些ADNI数据。我们提出的M3T基于曲线(AUC)下的区域(AUC)和AD分类的分类精度,与常规的3D分类网络相结合。这项研究表示,所构成的网络M3T在多机构验证数据库中实现了最高的性能,并证明了该方法有效地将CNN和Transformer用于3D医学图像的可行性。
简介:不可避免地会影响人们的情绪和行为的最常见和广泛的精神状况就是压力。对强大的情感,智力和身体障碍的生理反应可能被视为压力。因此,早期的压力检测可能会导致解决方案,以改善潜在的改进和最终事件抑制。目标:使用MLP分类器对人类的EEG信号分类。方法:我们检查了当前使用的EEG信号分析技术,用于使用多层感知器(MLP)检测精神压力。结果:建议的技术具有95%的分类精度性能。结论:在我们的研究中,使用MLP分类器从EEG信号中检测压力已显示出令人鼓舞的结果。分类器的高精度和精度以及某些EEG频段的信息性质,表明这种方法可能是压力检测和管理的宝贵工具。
染色体是生物体的遗传信息的载体,可以分为两种主要类型:同种异体体和常染色体。同种体,也称为性染色体,在性别决定和调节与性别相关的特征中起着至关重要的作用。尽管多样性相当多,但它们具有标准特征和基因含量和配对系统的差异。了解性染色体对于农业和疾病控制工作至关重要,在这种工作中,利用性别特异性特征的遗传方法表现出希望。但是,识别同种异体,尤其是在非模型生物中,带来了挑战。在这里,我们探索了监督的机器学习模型的使用,包括逻辑回归,随机森林,支持向量机和K-Nearest邻居,将基于全基因组测序数据基于全基因组测序数据的常染色体或同体分类。评估了覆盖,杂合性和GC含量等特征的预测能力。结果强调了特征组合和模型选择以进行准确分类的重要性。
摘要。本研究提出使用变分量子分类器对小麦品种进行自动分类。在大型数据集上训练的模型将能够识别种子特征和品种成员之间的独特模式和关系。这将使农民和研究人员能够更准确地识别小麦品种,从而可以改善种植和作物管理过程。这种方法不仅符合优化农业生产的需要,而且符合使用先进技术实现农业部门精准和高效的背景。通过这项研究,预计小麦生产的质量和可持续性将得到改善,这对粮食安全和可持续农业发展至关重要。该问题的目标是根据种子特征对小麦品种进行分类。VQC 在训练数据集上进行训练,然后在测试数据集上进行评估。为了评估模型的性能,使用了各种指标,例如准确度、精确度、召回率、F1 分数和混淆矩阵。
摘要 - 这项研究的重点是对基于机器学习原理的方法论平台的开发和分析,用于评估学习过程并增强学生的成绩。这项研究的目的是开发和测试一种根据天真的贝叶斯分类器评估学生学业表现的方法。此外,这项研究的目的是创建一种有效的工具,能够使用当代机器学习方法和技术来自动化和优化对教育绩效的评估。这项研究采用幼稚的贝叶斯分析技术来预测学生的成就,并在Python实施了算法。尽管强调了软件产品的开发,但该研究主要集中于该方法的开发和分析。我们的发现强调了这种方法的新颖性,该方法可以作为教育机构和教育工作者的宝贵工具。