2022 年诺贝尔物理学奖授予了阿斯派克特 (Aspect)、克劳泽 (Clauser) 和蔡林格 (Zeilinger),以表彰他们“对纠缠光子的实验,证明了贝尔不等式的违反并开创了量子信息科学” [1]。在本文中,我们描述了我们自己使用纠缠光子违反 CHSH 不等式(一种贝尔不等式)的实验。我们使用 qutools quED 纠缠演示器仪器通过自发参量下转换产生纠缠偏振光子。我们测量了旋转基底中的光子偏振,并计算出纠缠光子的 CHSH 相关值 | S | = 2.123±0.030>2 和非纠缠光子的 | S | <2。我们还生成了非经典相关曲线,描述了纠缠和非纠缠光子在连续偏振器角度范围内的偏振测量巧合。我们的结果证明了纠缠的非局域性,并阐明了对光子对极化测量的非经典相关性的更好的理解。
摘要:数字计算机仅模拟大脑的神经元网络。例如,他们的von Neumann架构将记忆和处理器单元分开,因此导致相当大的能源消耗和环境有害的能量消散与绿色交易相矛盾。以脑为导向的(神经形态)计算,可以通过熟悉的电路网络和光子设备来重现大脑结构,这些电路网络和光子设备将这些功能集成到诸如自然大脑的能源消耗较少,效率显着增长和环保友好的功能。它们可用于建模物理,化学,生物学和神经系统中的结构和模式形成。最近的诺贝尔物理学奖(Hopfield and Hinton 2024)突出了现代机器学习在自然形成中的深层根源。模式和结构形成通过人工智能中的学习算法打开了模式识别的新应用。可以通过使用(例如光子量子芯片)与量子并行性和纠缠的量子计算的优势结合使用。他们的原则也深深地植根于自然中,最近也由物理学中的诺贝尔奖(Fack,Clauser,Zeilinger,Zeilinger 2022)强调。我们旨在集成所有这些计算范式的混合和可持续性AI。
约翰·克劳瑟(John Clauser)获得了学士学位1964年,他的M.A.在1966年的物理学和博士学位。 1969年哥伦比亚大学的物理学博士学位。 从1969年到1996年,他曾在劳伦斯·伯克利国家实验室,劳伦斯·利弗莫尔国家实验室和加利福尼亚大学伯克利分校工作。 John于2010年获得沃尔夫物理奖,并于2022年获得诺贝尔奖,以及Alain Factext和Anton Zeilinger对非本地量子纠缠和对当地现实主义的实验测试的观察。 在1969年,他与约翰·贝尔(John Bell)的理论结果启发,与迈克尔·霍恩(Michael Horne),艾伯纳·谢莫尼(Abner Shimony)和理查德·霍尔特(Richard Holt)一起,提出了第一次对当地隐藏变量理论的测试,并为这些理论提供了第一个可检验的Chsh-Bell定理预测 - Clauser-Horne-Horne-Horne-Horne-Horne-Holtony-Holt(Chsh)) 1972年,他与斯图尔特·弗里德曼(Stuart Freedman)合作,对CHSH不平等的预测进行了首次实验测试。 这是世界上对非本地量子纠缠的首次观察,并且是对违反贝尔不平等现象的第一个实验性观察。 1976年,他对CHSH不平等预测进行了世界第二次实验测试。 1974年,他与迈克尔·霍恩(Michael Horne)合作,将当地现实主义理论提出为当地隐藏可变性理论的概括,并首先表明贝尔定理的概括为所有当地现实的自然理论提供了严重的限制。 这项工作引入了克劳斯 - 霍恩(CH)的不平等,是当地现实主义设定的第一个完全一般的实验要求。在1966年的物理学和博士学位。 1969年哥伦比亚大学的物理学博士学位。 从1969年到1996年,他曾在劳伦斯·伯克利国家实验室,劳伦斯·利弗莫尔国家实验室和加利福尼亚大学伯克利分校工作。 John于2010年获得沃尔夫物理奖,并于2022年获得诺贝尔奖,以及Alain Factext和Anton Zeilinger对非本地量子纠缠和对当地现实主义的实验测试的观察。 在1969年,他与约翰·贝尔(John Bell)的理论结果启发,与迈克尔·霍恩(Michael Horne),艾伯纳·谢莫尼(Abner Shimony)和理查德·霍尔特(Richard Holt)一起,提出了第一次对当地隐藏变量理论的测试,并为这些理论提供了第一个可检验的Chsh-Bell定理预测 - Clauser-Horne-Horne-Horne-Horne-Horne-Holtony-Holt(Chsh)) 1972年,他与斯图尔特·弗里德曼(Stuart Freedman)合作,对CHSH不平等的预测进行了首次实验测试。 这是世界上对非本地量子纠缠的首次观察,并且是对违反贝尔不平等现象的第一个实验性观察。 1976年,他对CHSH不平等预测进行了世界第二次实验测试。 1974年,他与迈克尔·霍恩(Michael Horne)合作,将当地现实主义理论提出为当地隐藏可变性理论的概括,并首先表明贝尔定理的概括为所有当地现实的自然理论提供了严重的限制。 这项工作引入了克劳斯 - 霍恩(CH)的不平等,是当地现实主义设定的第一个完全一般的实验要求。在1966年的物理学和博士学位。 1969年哥伦比亚大学的物理学博士学位。从1969年到1996年,他曾在劳伦斯·伯克利国家实验室,劳伦斯·利弗莫尔国家实验室和加利福尼亚大学伯克利分校工作。John于2010年获得沃尔夫物理奖,并于2022年获得诺贝尔奖,以及Alain Factext和Anton Zeilinger对非本地量子纠缠和对当地现实主义的实验测试的观察。在1969年,他与约翰·贝尔(John Bell)的理论结果启发,与迈克尔·霍恩(Michael Horne),艾伯纳·谢莫尼(Abner Shimony)和理查德·霍尔特(Richard Holt)一起,提出了第一次对当地隐藏变量理论的测试,并为这些理论提供了第一个可检验的Chsh-Bell定理预测 - Clauser-Horne-Horne-Horne-Horne-Horne-Holtony-Holt(Chsh))1972年,他与斯图尔特·弗里德曼(Stuart Freedman)合作,对CHSH不平等的预测进行了首次实验测试。这是世界上对非本地量子纠缠的首次观察,并且是对违反贝尔不平等现象的第一个实验性观察。1976年,他对CHSH不平等预测进行了世界第二次实验测试。1974年,他与迈克尔·霍恩(Michael Horne)合作,将当地现实主义理论提出为当地隐藏可变性理论的概括,并首先表明贝尔定理的概括为所有当地现实的自然理论提供了严重的限制。这项工作引入了克劳斯 - 霍恩(CH)的不平等,是当地现实主义设定的第一个完全一般的实验要求。它直到最近(2013年)进行了实验测试。他还引入了“无增强假设”,因此CH不平等降低了CHSH不平等,因此相关的实验测试也限制了局部现实主义。在1974年,他首先观察到光线统计的光(违反了古典电磁场的Cauchy – Schwarz不平等),因此首先在实验上证明了光子可以像局部粒子一样行事,并且不像电子辐射的简短脉冲。在1987年至1991年,他提出(并获得专利)原子干涉仪作为有用的超敏感性和重力传感器。在1992年,他与Matthias Reinsch一起,首先推导了分数Talbot效应的数量理论特性,并发明了Talbot-Lau干涉仪。在1990 - 1997年间,他与Shifang Li首次使用Talbot-Lau干涉法来构建原子干涉仪。在1998年,他发明并获得了专利的使用TALBOT-LAU干涉仪,用于“超高分辨率干涉X射线成像”。这本发明又允许软组织的X射线相对比医学成像。
Baumeister • Marks 机械工程师标准手册 Bovay • 建筑机电系统手册 Brady and Clauser • 材料手册 Brater and King • 水力学手册 Chopey and Hicks • 化学工程计算手册 Croft、Carr 和 Watt • 美国电工手册 Dudley • 齿轮手册 Fink and Beaty • 电气工程师标准手册 Harris • 冲击和振动手册 Hicks • 工程计算标准手册 Hicks and Mueller • 专业咨询工程标准手册 Juran • 质量控制手册 Kurtz • 工程经济学手册 Maynard • 工业工程手册 美国光学学会 • 光学手册 Pachner • 数值分析应用手册 Parmley • 机械部件手册 Parmley • 紧固和连接标准手册 Peckner and Bernstein • 不锈钢手册 Perry and Green • 佩里化学工程师手册 Raznjevic • 热力学手册表格和图表 Rohsenow、Hartnett 和 Ganic • 《传热应用手册》 Rohsenow、Hartnett 和 Ganic • 《传热基础手册》 Rothbart • 《机械设计和系统手册》 Schwartz • 《金属连接手册》 Seidman 和 Mahrous • 《电力计算手册》 Shand 和 McLellan • 《玻璃工程手册》 Smeaton • 《电机应用和控制手册》 Smeaton • 《开关设备和控制手册》 Transamerica
量子技术的发展和广泛应用高度依赖于分配纠缠的通信信道的容量。空分复用 (SDM) 增强了传统电信中的数据信道传输容量,并有可能利用现有基础设施将这一理念转移到量子通信中。在这里,我们展示了在 411 米长的 19 芯多芯光纤上进行偏振纠缠光子的 SDM,该光纤可同时通过多达 12 个信道分配偏振纠缠光子对。多路复用传输的质量由高偏振可见性和每对相反纤芯的 Clauser-Horne-Shimony-Holt (CHSH) Bell 不等式违反证明。我们的分配方案在 24 小时内表现出高稳定性,无需任何主动偏振稳定,并且可以毫不费力地适应更多信道。该技术增加了量子信道容量,并允许基于单个纠缠光子对源可靠地实现多用户量子网络。
摘要:研究有利于非经典关联保存的配置在过去十年中一直是一个热议话题。在这方面,我们提出了一个暴露于时间相关的外部磁场的两量子比特海森堡自旋链系统。考虑了各种关键参数对量子关联动力学行为的影响,例如外部磁场的初始强度和角频率以及状态的纯度和自旋-自旋各向异性。我们利用局部量子不确定性(LQU)和量子干涉功率(QIP)来研究量子关联的动力学。我们表明,在外部磁场的临界角频率和自旋-自旋各向异性下,系统中的量子关联可以成功保持。当系统和场之间的相互作用开始时,LQU 和 QIP 会下降,但系统很快就会恢复。根据 Clauser–Horne–Shimony–Holt 不等式计算非经典相关性的度量,可以证实这一趋势。值得注意的是,只有当状态纯度发生变化时,量子相关性的初始和最终保留水平才会发生变化。
诺贝尔奖获得者约翰·F·克劳瑟(John F. Cornelis le Pail /荷兰教授Reynald du Berger /法语加拿大Barry Brilr / New Zealand Viv Forbes / Australia Dr。 PATRICK MOORE / ENGLISH SPEAKING CANADA JENS MORTON HANSEN / DENMARK PROFESSOR LÁSZIÓ SZARKA / HUNGARY PROFESSOR SEOK SOON PARK / SOUTH KOREA PROFESSOR JAN-ERIK SOLHEIM / NORWAY PROFESSOR STAVROS ALEXANDRIS / GREECE FERDINAND MEEUS / DUTCH SPEAKING BELGIUM PROFESSOR RICHARD LINDZEN / USA HENRI A. MASSON / FRENCH SPEAKING BELGIUM PROFESSOR INGEMAR NORDIN /瑞典吉姆·奥布莱恩(Jim O'Brien) /爱尔兰共和国教授伊恩·普林默(Ian Plimer) /澳大利亚道格拉斯·波洛克(Douglas Pollock) /智利博士。 Blanca Parga Landa /西班牙博士。 Peter Stallinga /葡萄牙教授Alberto Prestininzi /意大利教授BenoîtRittaud / France Dr。 Thiago Maia /巴西教授Fritz Vahrenholt /德国Brenchley /英国Dušanišanbižic的子爵蒙克顿子爵 /克罗地亚,波斯尼亚和黑塞哥维那,塞尔维亚和蒙特·尼黑人< / div < / div < / div>
在本文中,我们将讨论游戏。游戏由多名玩家和一名裁判进行。玩家共同制定策略,然后被分开并被禁止交流。根据玩家事先知道的分布,裁判向每个玩家发送问题,每个玩家都给出答案。然后,他们根据问题和答案的某种函数来获胜或失败。这些游戏具有历史意义,因为它们用于展示我们宇宙的非局部特性。贝尔 [Bel64] 证明了我们当前量子力学理论所预期的行为与一个位置的事件不能受到远处同时发生的动作影响的想法是相互矛盾的。克劳瑟、霍恩、希莫尼和霍尔特 [CHSH69] 随后利用贝尔工作中的想法,提出了一个实验(或游戏),可用于验证这些非局部属性。这个游戏被广泛称为 CHSH 游戏。在这个游戏中,有两个玩家,每个人都会得到独立且均匀随机选择的比特作为问题,他们各自回答一个比特,如果他们答案的异或等于问题的和,他们就赢了。这个游戏特别有趣的地方在于,如果我们假设我们的宇宙没有非局部效应(就像我们期望从量子纠缠中得到的那些),那么我们可以证明爱丽丝和鲍勃赢得这场比赛的概率不能超过 75%。另一方面,如果我们允许他们共享量子纠缠,他们最多可以赢得 2+ √