高精度和高准确度地测量、保持和分配时间的能力是科学探索的基础能力。除了基础科学之外,时间同步也是公共和私人通信、导航和测距、分布式传感等技术应用不可或缺的功能。我们建议实施一个由卫星和地面时钟组成的量子网络,该网络能够实现皮秒精度的量子时钟同步。实施拟议的 QCS 网络具有双重优势:(1) 为传统应用提供比目前更准确、更强大、更安全的时间同步网络,(2) 可满足未来量子通信网络更严格的同步要求。
1 中国医学科学院北京协和医学院北京协和医院神经内科,北京,中国 2 波士顿大学医学院解剖学和神经生物学系,波士顿大学,马萨诸塞州波士顿,美国 3 波士顿大学医学院 Framingham 心脏研究,波士顿大学,马萨诸塞州波士顿,美国 4 波士顿大学医学院神经内科系,波士顿大学,马萨诸塞州波士顿,美国 5 波士顿大学公共卫生学院流行病学系,波士顿大学,马萨诸塞州波士顿,美国 6 波士顿大学医学院 Slone 流行病学中心,波士顿大学,马萨诸塞州波士顿,美国 7 波士顿大学阿尔茨海默病研究中心,波士顿大学,马萨诸塞州波士顿,美国 8 加利福尼亚大学戴维斯分校神经内科和神经科学中心,加利福尼亚州萨克拉门托,美国 9 罗文大学骨科医学院新泽西成功老龄化研究所老年医学和老年学系和心理学系,新泽西州,美国 10 马萨诸塞大学陈医学院医学系临床信息学分部,马萨诸塞州伍斯特,美国
内在的昼夜节律钟会产生生理和行为的昼夜节律,从而使我们能够适应由地球自转而产生的循环环境线索。昼夜节律失调会对不同生物的适应性和健康产生有害影响。前往火星和在火星上进行的星际旅行的环境线索与地球上的环境线索截然不同。这些差异带来了许多适应性挑战,包括对人类昼夜节律的挑战。因此,使昼夜节律适应火星环境是未来登陆和居住在火星的先决条件。在这里,我们回顾了与火星环境对昼夜节律的影响相关的研究进展,并提出了进一步研究的方向和改善昼夜节律钟适应未来火星任务的潜在策略。
*主要作者:vladimir.schkolnik@physik.hu-berlin.de,+49(0)30 2093-7625 1 humboldt-UniversitétZu Zu at Berlin,Newtonstr。15,12489德国柏林2 Helmholtz-Institut Mainz,Johannes Gutenberg-Universitat Mainz,55128德国Mainz,德国3物理学,加利福尼亚州加利福尼亚大学94720-94720-7300物理学,442加利福尼亚州斯坦福市购物中心94305 6原子开发商,2501 Buffalo Gap Rd#5933,Abilene,Texas,Texas 79605 7 79605 7物理系,威斯康星大学麦迪逊大学,麦迪逊大学,威斯康星州53706,83706 8 (WPI),东京大学高级研究机构,东京大学,喀西瓦大学,喀西瓦,千叶277-8583,日本日本10号物理学院,锡德尼悉尼,2006年,新南威尔士州,2006年,澳大利亚11吉拉大学11吉拉大学,国立标准师和技术学院,科罗拉多大学,科罗拉多州科罗拉多大学,科罗拉多州科罗拉多大学,加利福尼亚州8030940404040403030994033099903099.440303099944033099940309990303年。加利福尼亚州帕萨迪纳技术学院91109
光原子时钟和光学时间传输的最新进展使得针对基本物理和时机应用测试的精确计量学方面有了新的可能性。在这里,我们描述了一个太空任务概念,该概念将将最先进的光原子钟放在地球周围的怪异轨道上。高稳定性激光链路将将轨道航天器上的相对时间连接到地球站。此任务的主要目标是测试重力红移,这是一种经典相对论的经典测试,其灵敏度超出了当前限制的30,000倍。其他科学目标包括其他相对论测试,对暗物质的搜索和基本常数的漂移以及建立高精度的国际时间/地理参考。
光学原子钟和光学时间传输的最新进展为基础物理测试和计时应用的精密计量提供了新的可能性。这里我们描述了一个太空任务概念,该概念将把最先进的光学原子钟放置在地球偏心轨道上。高稳定性激光链路将把轨道航天器的相对时间、范围和速度连接到地面站。这次任务的主要目标是测试引力红移,这是广义相对论的经典测试,灵敏度是当前极限的 30,000 倍。其他科学目标包括其他相对论测试、增强对暗物质和基本常数漂移的搜索,以及建立高精度国际时间/测地线参考。1. 简介
SECI 沿着以需求为中心的可再生能源发展道路前进,于 2019 年 10 月发布了首个 400 兆瓦 RE RTC 招标(RTC-1)。随后,在 2020 年 3 月,SECI 宣布了 5,000 兆瓦 RE+热能(RTC-2)招标(2020 年 12 月容量降至 2,500 兆瓦)。2020 年 5 月,SECI RE 400 兆瓦(RTC-1)拍卖将 PPA 第一年的 L1 电价定为 2.9 卢比/千瓦时(前 15 年每年上涨 3%)。此后,为了为可再生能源与任何传统能源或储能相结合的部署铺平道路,MNRE 发布了基于电价的 RTC 电力项目竞争性招标流程指南。这些涵盖能源结构、关税结构、PPA(包括支付安全)等方面。对于 2021 年 10 月进行的 RTC-2 拍卖,L1 关税为 3.01 卢比/千瓦时。
解决 QKD 中符号同步的一个直观方法是使用成对光纤通过不同信道传输参考信号和量子数据信号。然而,温度会导致成对光纤之间产生延迟,从而导致同步精度下降 [Tanaka et al. 2008]。时分复用 (TDM) 方案克服了这个问题,其中同步脉冲从量子脉冲中滞后传输。然而,TDM 方案带来了其他问题,例如比特率限制,因为这些技术要求量子信号和参考信号之间有足够长的时间间隔 [Tanaka et al. 2008]。最近,已经提出了不同的 QKD 时钟恢复算法,避免使用额外的经典参考信号。在 [Pljonkin and Rumyantsev 2016] 中,提出了一种同步算法,其中时间帧被划分为更小的时间窗口,同步时间为 788 。 6 ms,同步失败概率为0.01%。在[Rumyantsev and Rudinskiy 2017]中,作者提出了一种不包括时间帧划分的算法,提供更快的同步时间3.216 ms,错误概率为0.0043%。然而,后者只能应用于站间距离不超过几十公里的QKD系统,而前者可以应用于数百公里的QKD系统。另一方面,
是将其定向到云中的,一些离子通过改变其能量状态而做出响应。改变状态的离子数与微波脉冲与正确频率的近距离相关。通过测量此数字,可以计算出频率误差并用于纠正集成到时钟滴答机制中的石英振荡器的频率。这项技术建立了几乎完美的40.5 GHz时钟“ tick”。设计避免了激光,低温或微波腔,从而实现了一种较小且健壮的设备,该设备消耗了少于50 W的功率。虽然基于地球的原子钟占用冰箱的空间,但DSAC时钟是烤面包机的大小。