腐蚀和摩擦学是材料外层上发生的表面过程。修改材料表面而不改变其内部性能是减少工程应用中腐蚀,摩擦和磨损的有效方法。纳米技术的进展允许使用纳米颗粒轻松开发表面保护涂层,以研究其在减少表面化学和物理损害方面的有效性。表面保护改善了性能,并延长了工业机械组件的运行寿命。汽车,航空航天,电气,水电,海水冷凝器和管子以及能源产生行业是这种涂层发现大量使用的许多领域之一。本文分析了不同类型的新创建的纳米结构涂层,包括它们的制造方法,腐蚀特征和摩擦学性能。它提供了有关纳米结构涂层的进度的信息,即带有金属和聚合物矩阵的纳米复合涂料。本评论旨在报告一系列旨在防止纳米复合材料涂料腐蚀的作品。
为了对溶液中的卤化物钙钛矿加工产生详细的理解,在Mapbi 3对Mapbi 3的自旋涂层和插槽-DIE涂层中进行了不同的蒸发速率,以不同的蒸发速率进行了研究。基于光学参数的时间演变,发现两种处理方法最初都形成了溶剂 - 复合结构,然后是钙钛矿结晶。后者分为两个阶段进行自旋涂层,而对于插槽涂层,仅发生一个钙钛矿结晶阶段。对于两种处理方法,发现随着蒸发速率的增加,溶剂复合物结构的结晶动力学和钙钛矿结晶在相对时间尺度上保持恒定,而第二次钙钛矿结晶的持续时间在自旋涂层中增加。第二个钙钛矿结晶由于溶剂 - 复合相形态的差异而受到限制,钙钛矿形成了。工作强调了确切的前体状态特性对钙钛矿形成的重要性。进一步证明,多模式光学原位光谱的详细分析允许对卤化物钙钛矿溶液处理过程中发生的结晶过程进行基本了解,而与特定的处理方法无关。
摘要:而不是直接刺激成骨,以有利的骨气免疫调节(OIM)赋予植入物表面是增强骨整合的新策略。尽管已经证明金属 - 苯酚涂层具有免疫调节功能,但它们对操纵骨气免疫反应的潜在应用尚未得到很好的探索。在这里,为了开发一种简单,快速和通用的涂层方法来赋予硬组织植入物出色的OIM,单宁酸(TA)和Mg 2+,以基于金属苯苯酚化学的化学在Ti板上形成涂层。除了它的简单性,超快,低成本和多功能性外,涂料方法的另一个优点还可以轻松地结合金属离子和酚类配体的独特功能。螯合的Mg 2+不仅可以激活巨噬细胞极化向抗炎表型,而且还可以直接刺激BMSC的成骨分化。TA图案用出色的活性氧(ROS)清除能力呈现涂层。ta和Mg 2+对巨噬细胞生物学行为表现出协同作用,抑制了其对M1表型的极化,从而促进了其对M2表型的极化。最后,形成的骨气免疫环境显然可以增强BMSC的成骨分化。因此,结果表明,设计的TA/mg 2+涂层不仅具有直接刺激骨生成的功能,而且还具有操纵所需的OIM。因此,将其应用于晚期硬组织植入物以增强整合性的构成具有很大的潜力。
由保罗·巴德(Paul Baade)和三位同事于2022年创立,8次通过其创新的多层窗帘涂料工艺来重塑锂离子电池制造。该技术可实现高级电极体系结构和更快的生产速度,目的是在降低成本的同时提高电池性能。保罗的旅程始于苏黎世Eth Zurich,在那里他为电动赛车设计了电池组。 他的激情使他在劳伦斯·伯克利实验室(Lawrence Berkeley Lab)研究了电池材料,并获得博士学位。在Eth Zurich,他在那里开发了8 Inks背后的创新技术。 公司的电极制造方法解决了现代电池生产中的主要挑战,并有可能改变行业的效率,绩效和经济性。 在这次采访中,保罗·巴德(Paul Baade)博士讨论了8inks多层窗帘涂层的独特方法及其对高性能,可扩展的电池解决方案的影响。保罗的旅程始于苏黎世Eth Zurich,在那里他为电动赛车设计了电池组。他的激情使他在劳伦斯·伯克利实验室(Lawrence Berkeley Lab)研究了电池材料,并获得博士学位。在Eth Zurich,他在那里开发了8 Inks背后的创新技术。公司的电极制造方法解决了现代电池生产中的主要挑战,并有可能改变行业的效率,绩效和经济性。在这次采访中,保罗·巴德(Paul Baade)博士讨论了8inks多层窗帘涂层的独特方法及其对高性能,可扩展的电池解决方案的影响。
1。引言地球的人口每天都在增加,并且迅速接近90亿人。因此,该人群的食品供应要求将增加。因此,有必要使用化学肥料来提供植物所需的元素,以使植物更快,更好地生长[1]。氮,磷和钾是必不可少的元素[2,3]。使用化学肥料(例如尿素肥料(氮)在土壤和水性环境中的尿素肥料(46.6%),由于肥料的高溶解度,可能会引起问题[4-6]。这些肥料的营养因其高溶解度而丢失,并以不同的方式浪费(浸出,蒸发,氧化和还原,硝化,硝化,硝化)[7-9]。这会导致频繁的施肥,除了对环境造成的严重且无法弥补的损害外,这将是昂贵的。在这些问题中,可以提及水和土壤污染,硬化,盐水,土壤结构的损失,低质量和不健康的产物的产生以及用硝酸盐和硝酸盐污染地面和地下水的污染[10-
摘要:生物矿化通过强化软组织为生物体提供承重和保护功能。将生物矿化原理以受控和自组织的方式转化为材料科学是非常可取的,但具有挑战性。自然系统的一个重要教训是,结晶可以通过区室化和模板化来控制。在这里,我们开发了一种结晶技术,该技术基于氧化石墨烯介导的区室化和模板化方解石纳米涂层的棱柱形生长,通过控制离子扩散到微区室中,从而产生多阶段、自组织的结晶,并代表了一种提供连续纳米涂层和增强聚合物表面在接触应力下的摩擦学性能的有效策略。本研究提供了一种自下而上的方法,使用非常基本的生物矿化原理来保护聚合物表面,这对于生物医学应用和以可持续的方式制造高性能功能材料很有意义。■ 简介
软机器人技术应用于临床的关键要求之一是机器人在人体内能够得到稳健的控制。这就要求机器人能够克服自身的重力、浮力和摩擦力,在内脏器官表面(可能是倾斜的、垂直的或密闭空间内的倒置表面)可靠地移动。针对上述要求,已经研究了几种提高粘附力的方法。受自然界生物的启发,人们研究并证实特殊结构和材料能够提高在干燥或潮湿条件下表面的粘附力。[20–22] 例如,受壁虎趾启发而设计的定向蘑菇尖微纤维已被证实在光滑干燥的表面上具有很强的粘附力和摩擦力。 [23] 据报道,受蜘蛛丝启发的复合材料在 4 至 −196°C 的湿冷基底上具有可靠的粘附力。 [24] 为了实现软机器人的可控粘附和分离,有人提出了一种受章鱼启发的水凝胶粘合剂,以增强机器人在体外生物组织上操作的稳定性。 [25] 此外,磁场梯度产生的力已被用来产生束缚力,以粘附软机器人。 [26]
16:05开发干燥混合和滚动磨机工艺,其中选定的粘合剂/添加剂用于电极制造(Trombibibatt)Pirmin Koch | Karlsruhe技术研究所(套件)
(或溶剂混合物),可以进一步加工成可打印或可涂层的墨水。这些悬浮液的行为通常由Derjaguin – landau – verwey -overbeek(DLVO)理论描述,[3]暗示纳米片在悬浮液中的浓度具有上限,其上限在悬浮液变为不稳定的上限。[4]然而,高浓度悬浮液(墨水)对于形成渗透的粒子网络是必需的,[5]并满足高通量打印和涂层方法的风湿性要求(例如,高粘度)。无论其浓度如何,悬浮液在热力学上都是不稳定的,并且颗粒倾向于通过聚集来减少其表面能量。[6]为了降低沉积速率,必须最小化溶剂和2D材料之间的表面能量差,[3]将分散培养基的选择限制在溶解性包膜可能不适合子分类处理的一些溶剂上。在传统的墨水配方中,添加剂(例如formantant,粘合剂和流变学修饰符)用于解决上述问题,并将2D物质置换到可打印或可涂层的油墨中。[7-10]例如,需要大浓度的聚合物粘合剂(例如70 mg ml-1乙酸纤维素丁酸酯),以将涂抹油墨的粘度提高到适合筛网打印的水平。[11]由于典型的添加剂会对电子特性产生不利影响(例如,