尽管本出版物中的所有声明和信息均被认为是准确可靠的,但它们仅供参考,免费提供,用户应承担使用产品或应用所述建议所获得结果的风险和责任。对于所述产品或设计、数据或信息,不作任何明示或暗示的保证,包括适销性或特定用途适用性的保证。关于产品可能用途的声明或建议,不代表或保证任何此类使用不侵犯专利,也不构成侵犯任何专利的建议。用户不应假设已指明毒性数据和安全措施,或可能不需要其他措施。
除了结构紧凑、维护成本低之外,燃气轮机还可以使用多种燃料源,这使其成为高效生产能源的自然选择。 因此,在过去 40 年里,燃气轮机在电力行业(包括公用事业、工业工厂以及航空业)中的应用越来越广泛。 [6] 在联合循环运行中,当入口温度超过 1400°C 时,效率可高达 63%。 [2] 因此,人们采用了不同的策略来保护当前使用的镍基高温合金,例如沉积氧化钇稳定化氧化锆热障涂层 (TBC) 和强化薄膜冷却。然而,当考虑长时间使用(t>10000h)时,这一标准并不现实,因为TBC在900°C以上时会快速蠕变,再加上其热膨胀系数(CTE)与合金的热膨胀系数相差很大,会增加剥落的风险,并限制金属基部件在涡轮发动机中的使用。[7–10] 尤其是设想未来的燃气轮机将使用氢或氨等无碳燃料源,水蒸气是燃烧的主要产物之一,会加剧这些合金的降解。[5,11–13] 因此,为了减少温室气体排放和提高燃气轮机效率,需要用更坚固、耐氧化和腐蚀的材料来替代它们,这些材料可以在更高的温度下使用。由于密度低、热膨胀系数低(3-5.5×10−6K−1)、抗高温蠕变性和熔点高,Si3N4、SiC、SiC/SiC复合材料等非氧化物硅基陶瓷在燃烧环境中的应用非常突出[14–21]。
抽象腐蚀一直是海洋环境中钢结构最严重的关注点。由于生物污染的广泛出现,除了电化学腐蚀,微生物学诱导的污染物(MIC)是触发海洋钢基础设施逐渐变化的重要因素。传统的抗腐蚀涂层通常缺乏海洋微生物的防染色功能,依恋和定植,因此在大多数情况下会加速现有的腐蚀损害。通过热喷雾制造的抗腐蚀涂层已广泛用于预防海洋腐蚀,但是通过热喷雾技术途径沉积的抗MIC涂料仍然难以捉摸。开发带有双反腐蚀和防撞性能的液压涂层是打击麦克风的关键。在这篇综述中,了解生物造成和发展反污染和反mic
聚氨酯面漆 58 系列 35 Spray2Fix 58 系列 36 683-3-2 36 683-3-20 37 Aerobase 38 Aerobase 特殊效果 39 Aerodur 3001E 40 Aerodur 3001G 41 Aerodur 3002G 42 Aerodur 5000 42 Aerodur 清漆 UVR 43 Aerodur ARC 44 Aerodur C 21/100 44 Aerodur Finish C21/100 45 Aerodur HS 67348 45 Aerodur HS 77302 46 Aerowave 5001 46 Aerowave 5001 ARC 47 Alumigrip 4200 47 Alumigrip 4250 48 Alumigrip 4400 48 Alumigrip 4450 49 Aviox 高级云母系列 49 Aviox 透明涂层 UVR 50 Aviox 面漆 77702 51 Aviox 哑光透明 52 Aviox SGL 铝 52 Eclipse 平光 53 Eclipse 光泽 54 Eclipse 光泽金属 55 Eclipse 光泽云母 56 Spray2Fix Eclipse 光泽喷雾罐 56 Eclipse 半光泽 57 Spray2Fix Aerodur5000/ECM-F 58 Spray2Fix Intergard 10215C 58
目前的研究旨在通过使用电泳沉积来表征钛底物上羟基磷灰石,锆和氧化石墨烯纳米复合材料。在第一阶段,除了表征创建的复合涂层外,通过使用扫描电子显微镜(SEM)评估了创建涂层的厚度和均匀性。另外,通过元素分析研究了纳米粉末颗粒的分布。在第二阶段,通过使用X射线衍射分析,绘制并研究了涂层中使用的材料的位置。在第三阶段,为了评估在向羟基磷灰石中添加纳米颗粒而导致的涂层腐蚀行为,并将其与非涂层样品进行了比较,对化学偏振形式的电化学分析进行了比较,并与绘制相关图表进行了分析。最后,在第四阶段,进行了涂层上大肠杆菌和葡萄球菌细菌的抗菌测试,并与未涂层的合金样品进行了比较。腐蚀测试结果表明,使用纳米复合涂层会导致表面耐腐蚀性的增加。抗菌测试结果表明,使用纳米复合涂料可有效地降低表面细菌的生长。
不同类型的液体固定表面,超疏水材料和涂料是良好的。有效的超疏水表面必须具有地形粗糙度和防水表面化学。微型或纳米乳状表面,通过微观图案制造,然后进行表面化学修饰[13,14],通常用于系统地探索超恐惧症的特性。但是,它们的织物需要在大规模应用上经济上可行的光刻过程。[15]为了克服这一问题,已经报道了用于预先处理超疏水表面和材料的众多替代解决方案。[16,17]中,通过喷涂沉积的涂料在工业和企业应用中都发现了市场。[15]然而,喷雾沉积过程和材料的随机性会导致涂层均匀性的变化,并带来了提供一致的高涂层质量的挑战。在很大程度上缺乏这些广泛使用涂层的润湿性能的系统定量评估,[18],可以使涂料程序和涂料配方的优化有益于优化。表面的润湿表征传统上是通过光接触角性测量法(CAG)进行的。[19]该技术在高度非润湿表面(例如超疏水涂层)上的准确性降低,在这些技术中,前进和退化的接触角的误差可以达到10°。[23][20–22]此外,人们普遍理解,这些测量不适合研究表面润湿性的空间异质性,因为几毫米的横向分辨率导致平均润湿性能在大面积上平均。
摘要:与化学计量简单的氮化铝 (AlN) 相比,锆钛酸铅薄膜 (PZT) 具有优异的压电和介电性能,是先进微机电系统 (MEMS) 器件中另一种有希望的候选材料。大面积 PZT 薄膜的制造具有挑战性,但需求迫切。因此,有必要建立合成参数与特定性能之间的关系。与溶胶-凝胶和脉冲激光沉积技术相比,本综述重点介绍了磁控溅射技术,因为它具有高度的可行性和可控性。在本文中,我们概述了 PZT 薄膜的微观结构特征、合成参数(如基底、沉积温度、气体气氛和退火温度等)和功能特性(如介电、压电和铁电等)。本综述特别强调了这些影响因素的依赖性,为研究人员通过磁控溅射技术获取具有预期性能的PZT薄膜提供实验指导。
摘要:神经电极对于神经信号记录,神经刺激,神经兴奋剂和神经变性至关重要,这对于脑科学的发展至关重要,以及建立下一代大脑 - 电子 - 电子界面,中央神经系统治疗和人工智力。然而,现有的神经电极遭受了诸如外国身体反应,低灵敏度和功能有限的缺点。为了克服弊端,已经努力从软材料中创建新的结构并配置神经电极,但是通过表面涂层提高现有神经电极的功能也更为实用和经济。在本文中,最近报道了神经电极的表面涂层进行了仔细的分类和分析。涂料根据其化学成分,即金属,金属氧化物,碳,导电聚合物和水凝胶分类为不同的类别。全面提出了涂料的特征微观结构,电化学特性和制造方法,并讨论了它们的结构 - 特质相关性。特别关注涂料的生物兼容性,包括其外国体反应,细胞之际和植入过程中的长期稳定性。本评论文章可以为下一代神经电极的下一代多功能涂层提供有关功能设计,材料选择和结构配置的有用且复杂的见解。
旨在将温室气体排放到零净的旨在将温室气体排放减少到零的能源过渡运动一直在日本和海外加速(1)。为了实现这一目标,必须传播可再生能源的使用。但是,可再生能源有一个不利的,因为它容易受到各种不同因素,包括天气,这会导致负载变化。为了补偿这种弱点,对燃气轮机组合循环(GTCC)发电的期望有上升,该发电量能够快速启动和高热效率。为了提高GTCC发电的热效率,MHI集团已成为“ 1,700°C级超高温度的燃气轮机组件技术开发”国家项目的一部分。自2011年以来,该项目中开发的高级TBC已用于1600°C级的J系列燃气轮机,该公司已经运行了超过100万小时,并成功证明了高度的可靠性。此外,在2020年1月,三菱的力量开始调试下一代高效燃气轮机“ JAC(J-Series air冷却)”(2),该燃烧器通过使用强制性压缩率提高的强制性空气冷却系统来实现世界上最高的1650°C的涡轮机入口温度,并提高了高压速率的厚度(并提高)。这款涡轮机是基于J系列的,该系列具有可靠的技术和长期的现场操作。本报告将描述对JAC完成至关重要的先进TBC技术。