• Solar radiation (ultraviolet (UV), x-rays) • Charged particle radiation (electrons, protons) • Cosmic rays (energetic nuclei) • Temperature extremes & thermal cycling • Micrometeoroids & orbital debris (space particles) • Atomic oxygen (AO) (reactive oxygen atoms) • Planetary dust and wind • Reactive atmospheres
[°C] Lanco™ TF 1778 C PTFE 改性聚乙烯蜡 ≤ 6 102 Lanco™ 2510 SF 无机改性聚烯烃蜡 ≤ 6 105 Lanco™ 2520 SF 无机改性聚烯烃蜡 ≤ 6 105 Lanco™ 2540 SF 改性聚烯烃蜡 ≤ 6 128 Lubrizol 测试产品 改性聚烯烃蜡 ≤ 9 144 技术性能 使用含 PTFE 和不含 PTFE* 表面改性剂,在黑色聚酯/HAA 体系中比较了耐刮擦性、光泽度和摩擦系数 (COF)。进行了不同的划痕测试。图 1 显示了含 PTFE 的商业基准 (Lanco™ TF 1778 C) 与不含任何蜡的配方相比的优势。不含 PTFE* 的添加剂对光泽度的影响较小,显著降低摩擦系数 (COF),并提供与 PTFE 相当的出色表面保护性能,如图表 2 所示。黑色聚酯/HAA 配方:
功能单体的各种选择使我们能够为乳液聚合物配备独特的特性。由于建筑涂层被应用于各种底物上,因此请求不同的粘附特性。木材,矿物表面,金属或预涂层表面与涂层等底物的组合显示出不同的物理相互作用。因此,对于优化,必须选择附加到聚合物骨架上的官能团。在某些情况下,这种相互作用是通过在基板表面上的聚合物和活性功能之间形成的化学联系增强的。只能针对一种特定的底物(例如木材)进行优化,或者可以并行地将几个粘附启动子共同聚合,以确保按照“房屋涂料”的要求保证通用粘附性能。
获得纳米结构化的氮化物和碳耐碳涂层的最常见方法之一是反应性木ementron溅射(RMS)。RMS方法使使用特定的光学和机械性能形成高质量的涂层。通过离子血浆方法形成涂料的一个重要问题是它们的组成,结构以及其物理和机械性能的预测。12在许多已发表的研究12 - 15中,已经表明,所有沉积参数都在涂层结构和机械特征中认真对待。航天器的可靠操作需要使用具有抗裂缝特性的耐磨涂层。特别是,陀螺仪系统的摩擦学元素(例如推力轴承)需要用硬抗裂缝覆盖
摘要。植入物领域正在通过生物活性涂层重新定义,这些涂料已成为医疗植入物中的开创性区域。这些独特的涂层包含生物活性分子,具有与相邻生物周围环境相互作用,促进骨整合,提供抗菌质量并为整体植入物功能贡献的特殊能力。本摘要探讨了生物活性涂层中的最新改进和设计,重点是它们在增强医疗植入物的功能和耐用性方面的重要作用。主要目标之一是整合诸如羟基磷灰石和生物活性玻璃等尖端材料,这些材料鼓励植入物整合并产生生物活性离子以进行治疗作用。通过修改这些涂层的表面粗糙度和孔隙度可以准确控制组织的细胞粘附和再生。此外,通过抗生素和银纳米粒子等抗菌药物(例如,感染的风险(这是植入手术中的普遍关注点))也可以最小化。为了实现涂料沉积中的一致性和寿命,这项研究还研究了最新技术,包括等离子体喷涂和静电纺丝。关键字:生物活性,涂料,植入物,骨整合,生物材料
聚氨酯面漆 58 系列 35 Spray2Fix 58 系列 36 683-3-2 36 683-3-20 37 Aerobase 38 Aerobase 特殊效果 39 Aerodur 3001E 40 Aerodur 3001G 41 Aerodur 3002G 42 Aerodur 5000 42 Aerodur 清漆 UVR 43 Aerodur ARC 44 Aerodur C 21/100 44 Aerodur Finish C21/100 45 Aerodur HS 67348 45 Aerodur HS 77302 46 Aerowave 5001 46 Aerowave 5001 ARC 47 Alumigrip 4200 47 Alumigrip 4250 48 Alumigrip 4400 48 Alumigrip 4450 49 Aviox 高级云母系列 49 Aviox 透明涂层 UVR 50 Aviox 面漆 77702 51 Aviox 哑光透明 52 Aviox SGL 铝 52 Eclipse 平光 53 Eclipse 光泽 54 Eclipse 光泽金属 55 Eclipse 光泽云母 56 Spray2Fix Eclipse 光泽喷雾罐 56 Eclipse 半光泽 57 Spray2Fix Aerodur5000/ECM-F 58 Spray2Fix Intergard 10215C 58
多年来,学术和工业太空行为者已经设想了可变的发射设备和涂料的使用。目的是克服具有恒定热光学特性的常见光学涂层的局限性。可变的发射设备和涂料允许设计人员最大程度地抑制热排斥,同时最大程度地减少加热器功率需求。这些涂层最有前途的是基于热色素(TCH)和电致变色(ECH)材料。热色材料可以在低温下以较差的发射器和高温下的良好发射器进行调整。因此,它们被提出为能够在板上航天器上支持热控制的智能元素。TCH无需任何电子反馈或机电驱动,因此以零功率成本进行操作。可变发射设备的另一种有前途的材料是基于电色素学的。通过使用低功率电势来适应表面的红外发射率来实现ECH用于空间应用的优势。在ESA和CNES资助的正在进行的研发(R&D)活动中,TCH多层瓷砖是基于用工业手段开发的VO2技术,而ECH设备则基于封装的导电聚合物。到目前为止,在热染色体的变化范围内,冷和热病之间的ECH和TCH发射率对比度分别为0.3和0.4。在本演讲中,各种方法是为了设计,制造和测试TCH和ECH
Plexus ® MA8120 开放时间约为 20 分钟,MA8120 是一种先进的直接金属低卤双组分甲基丙烯酸酯结构胶粘剂。它专为各种金属、涂层、塑料和复合组件的结构粘合而设计。MA8120 可以出色地将无需底漆的金属粘合到其他金属、工程热塑性塑料和复合组件上,几乎无需表面处理。按 1:1 的体积比混合,MA8120 可以将热浸镀锌钢和电镀锌钢以及其他金属粘合到不同的基材上。该产品为工业和运输装配提供了高强度、韧性、耐环境性和耐疲劳性的卓越组合。有关更多详细信息,请参阅技术数据表。
你有没有想过孔雀羽毛的鲜艳蓝色或甲虫身上闪闪发光的金属几丁质?这些自然奇观就是结构色的例子——微观结构产生鲜艳持久色调的现象。受到这些奇迹的启发,日本的一个研究小组一直在探索结构色。他们早期的工作发现,用黑色素颗粒制备结构色材料模仿了孔雀羽毛的着色机制。在此基础上,该团队着手开发一种涂层材料,利用黑色素颗粒捕捉结构色的光彩,即使从不同角度观看也能产生非彩虹色。研究小组包括日本千叶大学理工学院的 Michinari Kohri 教授和 Yui Maejima 女士,他们与武田胶体技术咨询有限公司的 Shin-ichi Takeda 博士和国家材料科学研究所的 Hiroshi Fudouzi 博士合作。他们的研究成果于 2024 年 12 月 18 日发表在《大分子反应工程》上。Kohri 博士描述了他进行这项研究的动机,“多年来,我们一直在研究受自然生物启发的基于黑色素的结构色材料。我们的动机是通过开发快速创造结构色并添加防水等功能特性的方法,使这些材料更加实用。” 为了实现这一目标,该团队准备了三种不同直径的聚苯乙烯颗粒。然后,他们添加了一层聚多巴胺(改性黑色素颗粒),然后通过迈克尔加成反应添加具有疏水性的具有 18 个碳原子的烷基(十八烷基)。在该反应中,带负电荷的化学基团添加到 α,β-不饱和羰基化合物中,以引入增强防水性的疏水基团。这是在不依赖疏水性但会引起重大环境问题的氟化合物的情况下实现的。使用时域核磁共振 (TD-NMR) 方法确认了颗粒的疏水性。处理完颗粒后,它们会分散在己烷中,从而可以快速高效地应用于玻璃和三聚氰胺层压板等基材上。干燥后,涂层的接触角超过 160 度,色调单一,表面自洁,呈现出荷叶效应,水滴在材料上形成水珠并滚落,不会留下残留物。研究发现,用十八烷基涂层获得的疏水性黑色素颗粒的疏水性几乎与用氟化合物涂层的颗粒相同,而氟化合物具有高疏水性。第一作者 Maejima 女士强调了这项研究的独特发现,她指出,“我们发现,通过将粒子表面的疏水性与粒子的分级组装结构相结合,可以实现超疏水结构彩色涂层,而这一切只需几分钟即可完成。”该团队专注于创建一种简单且可扩展的方法,确保涂层可以在几分钟内完成,而无需复杂的设备或工艺。前岛女士评论了他们发现的实用性:“这项技术有可能成为下一代涂层材料,非常适合墙纸或户外表面等应用,而无需依赖会随着时间而褪色的颜料。它的简单性和效率使其非常适合工业用途。”