摘要:软组织肉瘤(STS)包括一大批间充质恶性肿瘤,具有异质性细胞形态,增殖指数,遗传病变以及更重要的是临床特征。对这种广泛的多样性进行全面阐明仍然是改善其治疗管理和细胞 - 原始肿瘤的身份的核心问题,这些肿瘤是这种谜团的一部分。细胞重编程允许表型或身份之间成熟细胞的过渡,并代表肿瘤异质性的一个关键驱动力。在这里,我们讨论了驱动基因在STS中介导的细胞重编程如何深刻地重塑转化的细胞的分子和形态特征,并导致对其原始细胞的错误解释。本评论质疑必须将遗传改变的表观遗传环境视为STS肿瘤启动和进展的关键决定因素。重试癌症引发细胞及其克隆进化,尤其是通过表观遗传学方法,似乎是了解这些肿瘤起源并改善其临床管理的关键杠杆。
摘要:在这篇观点文章中,我们表明,基于信息理论措施的形态空间可以是将生物学剂与人工智能(AI)系统进行比较的有用构造。该空间的轴标记了三种复杂性:(i)自主神经,(ii)计算和(iii)社会复杂性。在这个空间上,我们绘制了细菌,蜜蜂,秀丽隐杆线虫,灵长类动物和人类等生物学剂;以及AI技术,例如深神经网络,多代理机器人,社交机器人,Siri和Watson。基于复杂性的概念化为识别定义特征和有意识和智能系统的类别提供了有用的框架。从评估意识和清醒的意识的认知和临床指标开始,我们询问AI和合成工程的生命形式如何衡量同源指标。我们认为,意识和清醒源于计算和自主性复杂性。此外,从认知机器人技术中挖掘见解,我们研究了意识在进化游戏中的功能作用。这表明描述意识的第三种复杂性,即社会复杂性。基于这些指标,我们的形态空间提出了除生物学以外的其他意识的可能性。即合成,基于组和模拟。这个空间提供了一个常见的概念框架,用于比较特质和突出设计原理。
无细胞的蛋白质合成(CFP)系统随着基础研究,应用科学和产品开发的通用工具而变得越来越重要,并随着其应用而出现的新技术。使用CFP的合成生物学领域取得了巨大进展,以开发用于技术应用和治疗的新蛋白质。从可用的CFPS系统中,无小麦生殖细胞蛋白质合成(WG-CFP)与使用真核核糖体的最高产量合并,这使其成为合成复杂真核蛋白质(包括蛋白质复合物和膜蛋白)的绝佳方法。将翻译反应与其他细胞过程分开,CFP提供了一种灵活的手段,以适应蛋白质需求的翻译反应。对这种有效,易于使用的快速蛋白质表达系统的需求很大,它们在驱动生化和结构生物学研究方面最适合蛋白质需求。我们在这里总结了小麦细菌系统的一般工作流,该过程提供了文献中的例子,以及用于我们自己的结构生物学研究的应用。通过这篇综述,我们希望强调快速发展且通用性的CFPS系统的巨大潜力,从而使它们更广泛地用作常见工具,以重组准备特别具有挑战性的重组真核蛋白。
核孢子膜复合体(NPC)是ProteinAssembliestHatformChannelsCractrossthenaclear核包膜,以介导细胞核与细胞质之间的通信。另外,NPC与染色质相互作用,并影响多个基因的位置和表达。有趣的是,NPC的组成在不同的细胞类型,组织和发育状态下可能会有所不同。在这里,我们回顾了最新发现,这表明NPCCOMPOSITION的修改,包括post-translationalmodifations,PlayAninstructiveriverLolectiverIncellincellfate机构。,我们专注于细胞特异性NPC脱乙酰化在不对称分裂的发芽酵母中的作用,该酵母调节了传输依赖性和与运输无关的NPC函数,以确定对子细胞中新的分裂周期的承诺时间。通过调节蛋白质定位和基因表达,NPC被作为细胞同一性的中心调节剂而出现。
摘要:从基于现实的数据开始的3D几何形状的重建是具有挑战性的,并且由于对现有结构进行建模和建筑遗产的复杂性的困难,因此具有挑战性且耗时。本文介绍了一种方法论方法,用于对测量产出的自动分割和分类,以改善从激光扫描和摄影数据的解释和构建信息建模。的研究重点是测量19-20-21世纪后期的网状,空间网格结构,这是我们的建筑遗产的一部分,这可能需要监视维护活动,并依赖于人工智能(机器学习和深度学习),用于以下方面: 加工。专注于博洛尼亚(Bologna)的钢中的网格结构的案例研究,这项工作就数据准确性,几何和空间复杂性,语义分类和组件识别提出了许多关键问题。
颞下颌疾病(TMDS)是影响颞下颌关节(TMJ),咀嚼肌肉和相关结构的普遍状况,导致疼痛,受限运动和关节噪声。这些疾病的起源是多因素,涉及结构,功能和心理成分。本综述深入研究了TMD中疼痛感知的神经生理机制,重点是外周和中心过程,包括神经可塑性在慢性疼痛中的作用。外围机制涉及TMJ中的伤害感受器,被炎症介质,机械应力和组织损伤激活,导致疼痛。由细胞因子和神经肽等因素驱动的外周敏化,增强了伤害感受器的敏感性,导致了慢性疼痛状态。三叉神经在向中枢神经系统(CNS)传输伤害性信息方面至关重要,c纤维和a- delta纤维参与疼痛感知。中央敏化是TMD的慢性疼痛的标志,涉及中枢神经系统的神经塑性变化,包括发条和长期增强(LTP),增强了疼痛感知并促进疼痛持久性。神经可塑性,无论是中央还是周边,在慢性疼痛的发展中起着至关重要的作用。中央可塑性包括突触变化和大脑连通性的改变,这在TMD患者的功能成像研究中观察到。外周可塑性涉及离子通道和神经递质的上调,以维持疼痛信号。此外,小胶质细胞,星形胶质细胞和疼痛途径之间的神经免疫性相互作用是中央敏化不可或缺的。了解这些机制对于开发针对周围和中心疼痛过程的有效治疗至关重要。新兴疗法,包括瞬态受体电位(TRP)通道阻滞剂和神经免疫调节剂,为管理TMD疼痛提供了新的途径,强调需要采用多方面治疗方法。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
经典加密基础的基础是建立在难以内向的数学概率上的,例如离散对数和整数分解。这些问题构成了许多广泛使用算法的基础,包括Diffie-Hellman(DH)[3],ECDSA,El-Gamal和椭圆曲线(EC)[2]。但是,量子计算机的出现对这些加密系统构成了重大威胁。算法(例如Shor [1])使量子系统能够有效地解决离散对数和整数分解问题,从而破坏了这些协议的安全性。应对这些挑战,我们提出了一种基于统一根和复杂圆圈的连续对数的新型加密方法。通过利用该框架的几何和光谱特性,我们的方法为将经典的加密算法适应后的量词时代提供了强大的基础。这种方法不仅保留了传统系统的关键原则,而且还引入了对量子攻击的抗性新结构,为未来的加密设计发展铺平了道路。
《生物医学》(ISSN 2227-9059)是一本开放获取期刊,致力于人类健康和疾病研究的各个方面、新治疗靶点的发现和表征、治疗策略以及自然驱动的生物医学、药物和生物制药产品的研究。主题包括疾病的发病机制、转化医学研究、生物医学研究中的生物材料、天然生物活性分子、生物制剂、疫苗、基因疗法、细胞疗法、靶向特异性抗体、重组治疗蛋白、纳米生物技术驱动产品、靶向治疗、生物成像、生物传感器、生物标志物和生物仿制药。该期刊开放发表基础科学和临床前研究水平的研究。我们邀请您考虑将您的作品提交给《生物医学》,无论是原创研究、评论文章还是开发当前关键主题的特刊。
纽约大都会区的国内生产总值 (GDP) 为 1.4 万亿美元,创造的财富超过澳大利亚、西班牙或墨西哥。2000 年,旧金山湾区每 1,000 人拥有 1.39 项专利,占美国所有专利活动的 12% 以上。众所周知,经济活动在空间上集中,而且这种集中度似乎正在增强。15 年间,湾区的发明率翻了一番多,2015 年占美国所有专利的近 20%。但哪些因素可以解释大城市中知识和财富前所未有的集中?为什么在一个由数字通信和国际旅行主导的世界,活动的空间集中度会增加?一个因素可能是复杂经济活动的增长:需要深度知识和劳动分工的活动。例如,考虑一下撰写一篇免疫学研究论文所涉及的分工。免疫学贡献通常需要专业知识狭窄且互补的人员之间的合作。您可能需要特定通路和蛋白质方面的专家,例如 NF- κβ 或 Toll 样受体,具有鼠类体内生物学经验的人员以及具有各种实验室技术经验的人员,例如流式细胞术。根据贡献的性质,您可能还需要包括具有临床经验的人员,这些临床经验再次针对每种自身免疫性疾病。这种知识和劳动的深度分工是免疫学或微生物学等领域所必需的,因为不可能将所有这些专业知识集中在一两个人身上。简而言之,我们可以说这项活动的复杂性很大,并不是因为参与的每个人都比从事其他活动的人更熟练,而是因为这项活动需要一个在互补知识领域拥有深厚专业知识的庞大人脉网络。