acerola水果通常在越南湄公河三角洲的省份生长。,在蒂安·吉安(Tien Giang)省,这种水果的产量很明显。各种研究表明,阿昔洛拉是维生素C的最丰富来源之一,其水平至少高10倍,其水平比柑橘类水果(例如橙子,柠檬和橘子)高10倍(Ruiz-Torralba等,2018)。此外,研究人员还发现,阿克罗拉(Acerola)包含许多植物化学成分,例如花青素,酚类和类胡萝卜素(Ribeiro&de Freitas,2020年)。这些化合物被证明对人们的健康有益,并且可以预防氧化,高血糖,炎症和肥胖等慢性疾病(Belwal等,2018)。此外,阿墨果果具有甜和酸味的味道和吸引人的黄色,橙色或红色。然而,快速成熟速率,薄的皮肤和多汁的结构导致阿克罗拉果实,即它们在运输过程中很容易损坏,而微生物则被微生物腐烂。其保质期在收获后的短期2至3天(Vendramini&Trugo,2000)。
对形成碳键的新方法的探索,导致结构新颖的桥接化合物的合成对科学界而言至关重要。许多桥接化合物是众所周知的天然产物和生物活性支架的部分结构,并且也是许多反应中的剂量[1](图1)。桥接分子的结构唯一性,例如它们的设计,异常对齐和诱人的化学反应,具有较小的桥梁群体鼓励我们检查其独特的有机,猜想和光谱研究[2]。设计一种连贯的策略来访问桥接化合物的综合策略的令人震惊的综合挑战,该化合物具有非保障的热力学稳定性,在合成化学家中产生了好奇心[3]。在桥位的杂原位的紧张的杂循环部分的合成是一项迷人的合成工作,由于兴高采烈以及许多有用的特性,与碳环糖化合物相比,由于兴高采烈以及许多有用的特性,它一直在获得大量的cur现利息[4]。在1928年,奥托·迪尔斯(Otto Diels)教授和他的学生库尔特·奥尔德(Kurt Alder)报告了关于合成的[4Þ2]环加成反应的开创性工作
摘要:有机化学在推进药品,材料科学和生物技术方面起着至关重要的作用,但是在该领域为创新提供专利提出了独特的挑战。本文探讨了专利有机化合物的关键问题,包括药物输送系统的复杂性,多态形式的出现以及保护合成途径的困难。它还突出了调节框架对生物制药专利的影响以及与生物活性化合物相关的道德考虑因素。最近的法律案件,例如Vanda Pharmaceuticals Inc.诉Westward Pharmaceuticals and Amgen Inc.诉Sanofi诉Sanofi展示了专利法的发展性质,为创新者和企业家提供了宝贵的见解。讨论了混合专利申请,职能团体保护和国际协议等策略,以帮助浏览专利系统的复杂性。本文旨在指导研究人员,创新者和行业专业人员克服在竞争性生物制药领域获得知识产权保护的法律和科学挑战。Keywords: Pharmaceutical patents, Organic chemistry innovation, Polymorph patenting, Drug delivery systems, Biopharmaceutical intellectual property, Reaction intermediates, Synthetic pathways, Patent non - obviousness, Derivative compounds post - expiration, Synthetic biology patenting, Functional group patenting, Regulatory challenges in drug patenting 1.引言有机化学是创新的基础。这促进了药品,材料科学和生物技术领域的巨大进展。和绿色化学。但是,由于科学和法律环境的变化,通过知识产权保护这些发展,尤其是专利,因此面临更多挑战。分析使用有机化合物保护发明的当前案例法律和行业实践。现代专利策略本文档有详细信息。专门为这些化合物设计的本文研究了新兴趋势和专利法在新药开发中的作用。它旨在向IP创新者和企业家提供建议,他们面临在竞争激烈的生物制药世界中获得专利的挑战。1)有机化学专利有机化学创新的重要性,从新的合成途径到突破性药物开发,通常对经济和工业增长很重要。专利提供了保护这些发明的法律框架。他们赋予生产者在一段时间内创作工作的权利。在制药(R&D)成本很高的行业中,专利只是确保通过市场回报的投资动机。但是,获得新药专利的过程可能非常精致。药物设计必须表现出新颖性,模棱两可和实用性。对分子结构进行略有更改可能会导致全新产品。生物制药专利将受到1999年的国家和国际法规的约束,使该系统更加复杂。2)与其他技术相比,有机化学有机化学的专利挑战面临着独特的专利挑战。化合物的纯粹复杂性以及需要详细解释制造过程
N = 1041 一项为期 6-52 周的研究涉及 2 型糖尿病患者,发现每天摄入 >45 克花生可显著降低总胆固醇(-0.14 mmol/L;95% 置信区间 [CI]: -0.26, -0.02;p=0.024)和甘油三酯(-0.10 mmol/L;95% CI: -0.17, -0.02;p=0.010)[11]。
a Max Mousseron 生物分子研究所,UMR5247 CNRS,蒙彼利埃大学,ENSCM,药学院,15 avenue Charles Flahault,34093 Montpellier cedex 5,法国。 b 列日大学蛋白质工程中心生物大分子实验室,Allée du 6 août B6,Sart-Tilman,4000 列日,比利时。 c 意大利锡耶纳大学医学生物技术系,I-53100 锡耶纳。来自结构生物学研究所 - Jean-Pierre Ebel,UMR5075 CNRS,CEA,约瑟夫傅立叶大学,41 rue Jules Horowitz,38027 Grenoble cedex 1,法国。 e EMBL Outstation c/o DESY,Notkestrasse 85,D-22603 汉堡,德国。 f 安纳多鲁大学药学院药物化学系,26470 埃斯基谢希尔,土耳其。 g 德国尤斯图斯李比希大学跨学科研究中心生物化学与分子生物学系主任,Heinrich-Buff-Ring 26-32,D-35392 吉森,德国。 h UMR8226,法国国家科研中心,皮埃尔和玛丽居里大学,物理化学生物学研究所,皮埃尔和玛丽居里街 13 号,75005 巴黎,法国。 i UMR8261,法国国家科研中心,巴黎狄德罗大学,物理化学生物学研究所,皮埃尔和玛丽居里街 13 号,75005 巴黎,法国。 1 现地址:Symbiose Biomaterials SA,GIGA Bât. B34, 1 avenue de l'Hôpital, 4000 列日, 比利时。 2 现地址:法国克莱蒙费朗化学研究所,UMR6296 CNRS,克莱蒙奥弗涅大学,63000 克莱蒙费朗,法国。 3 现地址:昆士兰大学化学与分子生物科学学院,圣卢西亚,布里斯班,昆士兰州 4072,澳大利亚。 4 现地址:CERN,HSE/SEE/SI,CH-1211 Geneva 23,瑞士。 *通讯作者:电话:+33-(0)4 11 75 96 03;传真:+33-(0)4 11 75 96 41。电子邮件地址:jean-francois.hernandez@umontpellier.fr (J.-F. Hernandez); laurent.gavara@umontpellier.fr(L.加瓦拉)。
摘要虽然Hop的女性花序(Humulus lupulus L.)主要用于酿造行业,但它们首先被用作药用植物。越来越多地研究了次生代谢产物,生物合成的酚类化合物以及诸如α-和β-酸等衍生物的抗菌潜力,并与更清洁,更有效的提取实践一起进行了研究。提取是用于将组件与植物材料分离的方法之一。超临界流体提取已成为去除天然化学成分的最常用方法,因为它更环保,易于使用且无害。研究人员有兴趣从啤酒花中提取生物活性化合物,对人类健康有好处。本综述描述了从啤酒花中提取的化合物的抗菌潜力。解释了它们的组成,抗菌和抗真菌特性。讨论了提取方法对抗菌特性的影响。最后,据报道,从啤酒花中提取化合物的抗菌和抗真菌潜力的超临界CO 2方法。关键词:抗菌活性,抗真菌活性,啤酒花,超临界流体提取。
全球冠状病毒病 (COVID-19) 大流行是由严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起的。冠状病毒因其病毒衣壳在显微镜下与日冕相似而得名(作者匿名,1968 年),它广泛传播,可引起类似于普通感冒的轻微感染。事实上,所有四种人类冠状病毒:HCoV-OC43、HCoV-HKU-1、HCoV-299E 和 HCoV-NL63,都是地方性的,并在人类中持续传播(Corman 等人,2018 年)。此前已报告过三次冠状病毒疫情,尽管规模远低于 COVID-19 疫情:SARS-CoV-1、MERS-CoV 和冠状病毒 HuPn-2018。与 COVID-19 类似,所有这些都是人畜共患疾病,最初通过动物宿主传播给人类(Ye 等人,2020 年)。与以往的疫情不同,自 2019 年底出现以来,COVID-19 几乎对每个人的生活都造成了巨大的破坏。截至 2022 年 11 月 4 日,COVID-19 已在全球造成 660 万人死亡(Ritchie 等人,2020 年)。巨大的死亡人数和对社会的影响促使人们大规模开展疫苗和抗病毒药物的开发,以预防和对抗 COVID-19。这项研究工作的积极成果毋庸置疑;多种疫苗,例如阿斯利康、Moderna、辉瑞/BioNTech,已经开发出来并投入使用。
人们长期以来怀疑丰富的特定营养会影响认知过程和情绪。最近对饮食因素对神经元功能和突触可塑性的影响的见解已经揭示了饮食对大脑健康和心理功能影响的基本基本机制。某些肠道激素,要么进入大脑或其中产生的肠道激素已被确定为认知能力的影响者[35]。此外,建立的突触可塑性的调节剂(例如脑衍生的神经营养因素)可以用作代谢调节剂,对食物摄入等外部信号做出响应。阐明食物如何影响认知的分子基础对于理解如何优化饮食以增强神经元的韧性,承受侮辱和促进心理健康至关重要[36]。
抽象的实时和准确水平的药物在治疗过程中产生关键效果。因此,可靠检测药物对于调节其适当浓度以提高有效性并降低可能的副作用很重要。但是,新可靠的感官系统的开发是上述目标的主要先决条件。免疫传感器由于其灵敏度和独特的特异性起源于抗原抗体相互作用的固有性质,因此可以视为有效的工具。本综述报告了过去几年中报道的药物免疫传感器(兽医和人类)免疫传感器的物质趋势。基于碳的(石墨烯,氧化石墨烯,碳纳米管等。),金和磁性材料是制造药物免疫传感器的主要材料。此外,本综述报告了对免疫传感器,机制以及免疫封闭形式的分析性能的好处和局限性,以解决未来的研究。