摘要:在药物开发的早期阶段,通常会筛选大型化学文库,以识别针对所选靶标具有有希望的效力的化合物。通常,所得的命中化合物往往具有较差的药物代谢和药代动力学(DMPK),具有负面的可开发性特征可能难以消除。因此,使用“无效库”开始药物发现过程,具有高度理想的DMPK特性但对所选目标没有效力的化合物可能是有利的。在这里,我们探索了机器学习提供的机会,以实现这种策略,以抑制α-苏核蛋白聚集,这是与帕金森氏病有关的过程。我们将一种生成机器学习方法MoldQN构建对α-突触核蛋白聚集的抑制活性,为具有良好DMPK特性的初始非活性化合物。我们的结果说明了如何使用生成建模最初赋予具有理想的开发性属性的化合物。■简介
在食品中观察到的有毒有机化合物的浓度升高对人类健康构成严重危险。天然和人工污染物都会引起食物污染。食品生产,包装,运输和存储的阶段也可能在很大程度上引起食品中不良物质的出现。摄入含有毒性污染物的食物的健康后果范围从轻度胃炎到功能失调的内部器官和神经系统综合症导致的死亡。世界卫生组织(WHO)为食品中这种化学物质的含量设定了建议,包括被认为是对人类消费安全的最低允许浓度。但是,必须控制化学污染物的食品。此外,需要快速,敏感和廉价的方法来在需求时检测它们。当前,免疫分析方法最广泛用于确定食物中的污染物。以竞争性格式开发荧光偏振免疫测定法(FPIA)方法是一种强大而现代的工具,用于检测各种矩阵中的有机分子,从而使FPIA方法对食品安全应用有用。由于可用于测量荧光偏振信号的便携式设备,因此可以在需要时使用FPIA方法。各种荧光标签和识别元素(受体,单克隆和多克隆抗体以及纳米体)允许荧光极化(FP)测定法检测有机物质的较低限制。FP分析是一种均匀,快速和定量的方法。开发各种FP测定格式使它们有望确定粮食污染物。本评论总结了2018 - 2023年在食品中检测有机污染物(农药,激素,毒素,抗生素和其他药物)的FP分析的出版物。此外,它证明了使用这种方法在需求点确定污染物的前景,并在食品安全检查期间检测高分子量物质,真菌和细菌感染的前景。
癌症是一种已知疾病,它会迅速增殖并侵入正常范围以外的细胞(世界卫生组织,2021 年),影响着全世界的人们。尽管合成药物对癌症和健康细胞都有毒性,但其副作用迫在眉睫,但通常用于化疗治疗癌症(Laskar 等人,2020 年;Hennessy 等人,2009 年)。正因为如此,人们不断需要研发出既能有效对抗癌细胞又能减少伤害的药物。使用草药治疗癌症可被视为一种有效且廉价的方式,可以促进普通民众负担得起医疗保健和药物,从而为生计和医疗领域的进步提供保障(Richard 等人,2015 年)。菲律宾拥有多种植物物种,但对其潜在药用特性的研究有限。
阿片类药物在怀孕的母亲中的使用会导致以中枢神经系统症状(例如高螺距哭泣)为特征的婴儿的新生儿戒毒综合征,从而缩短了婴儿的睡眠时间,而在喂养,震颤和肌肉张力的增加之后。代谢,呼吸系统和血管舒适系统在造成高温,打喷嚏和频繁打哈欠的婴儿中也受到影响。git症状,例如呕吐和松散的凳子(Proctor-Williams,2018年)。在子宫内暴露于阿片类药物的婴儿导致大脑流向大脑的脑血流增加,这会引起神经外疗法期间的危险。胎儿脑发育受到影响,这会导致产前阿片类药物暴露的婴儿的神经异常[1]。
摘要:与葡萄酒种植区域中葡萄酒相关的微生物群落结构是由该地区内的各种生态因素塑造的,对葡萄酒的风味产生了深远的影响。在葡萄酒发酵中,真菌比细菌贡献更多的感官活性生化化合物。在这项研究中,我们采用了扩增子测序来测量来自中国两个葡萄酒种植区域的赤霞珠葡萄酒的自发作品的样品,以研究自发发酵过程中真菌的多样性和结构演化,并分析真菌和挥发性化合物之间的相关性。结果表明,来自不同地理学起源的赤霞珠的真菌社区结构和多样性的显着差异,这些差异影响了葡萄酒的风味质量。随着酒精发酵的发展,糖疗法成为主要的真菌属,并重塑了真菌群落结构,而真菌群落的多样性也下降了。然而,在整个发酵过程中,每个葡萄酒种植区域的真菌群落仍然不同。此外,真菌群落和挥发性化合物之间的相关性表明葡萄酒是发酵的产物,涉及多个真菌属,并且风味受各种真菌的影响。我们的研究增强了中国葡萄酒种植地区真菌群落的理解,解释了与葡萄酒相关的真菌微生物在葡萄酒风味中的调节作用。
在2016年,多明哥提出了分子电子密度理论(MEDT)[1]作为一种新理论,与广泛的前沿分子轨道(FMO)理论相反,[2]以解释有机化学反应性。根据MEDT的说法,决定了任何化学事件的是电子密度的变化,而不是分子轨道相互作用。Medt已经挑战了许多传统概念,例如协调[3]和周环机制,[4]表明需要对有机化学反应性进行现代重新解释。在[3+2]环加成(32CA)反应的领域中,MEDT允许将一般分类分类为四种不同类型,这取决于所涉及的三个原子组件(TAC)的新结构/反应性关系(见图1)。[5]在本谈话中,我将显示MEDT在研究32CA反应中的应用。除了探索MEDT研究中最常使用的一些量子化学工具的实际应用外,还将强调这些相关的有机反应的新合理化[5],以及如何与当前的教科书描述进行比较。
在针对中枢神经系统 (CNS) 的药物开发中,发现能够穿过血脑屏障 (BBB) 进入大脑的化合物是最具挑战性的评估。几乎 98% 的小分子无法渗透 BBB,从而影响药物在 CNS 中的吸收、分布、代谢和排泄 (ADME) 机制,从而降低药物在 CNS 中的药代动力学。由于 CNS 通常无法进行许多复杂的程序,并且对数千种化合物进行体外渗透性研究可能非常费力,因此尝试通过实施机器学习 (ML) 方法来预测化合物通过 BBB 的渗透性。在这项工作中,使用 KNIME Analytics 平台,开发了 4 个预测模型,其中有 4 种 ML 算法,然后采用十倍交叉验证方法来预测外部验证集。在 4 种 ML 算法中,极端梯度提升 (XGBoost) 在 BBB 渗透性预测中表现出色,并被选为部署的预测模型。数据预处理和特征选择增强了模型的预测能力,整体来看,模型在训练集和外部验证集上分别达到了86.7%和88.5%的准确率以及0.843和0.927的AUC,证明了该模型具有较高的预测稳定性。
抽象的内生真菌是生活在植物内的微生物,是生物活性分子的有前途的来源。这些真菌由于能够生产多种物质而引起了人们对研究的日益兴趣。因此,本研究旨在强调植物中存在的内生真菌的相关性,作为生物技术中有多种应用的生物活性化合物的来源。为此,使用“内生真菌”,“植物”,“代谢产物”和“生物技术应用”一词在2015年至2022年之间的时间范围内使用术语“内生真菌”,“植物”,“代谢物”和“生物技术应用”,将科学计量学用作方法。这些真菌由于能够产生各种生物活性化合物而引起人们对研究的日益兴趣。内生真菌与植物之间的相互作用对于植物生存至关重要,而真菌产生的许多化合物具有生物技术潜力。科学计量学揭示了该主题的出版物数量增加,重点是研究和评论。内生真菌的假期专注于具有药用属性的植物家族。真菌与植物之间的这些复杂的相互作用在植物健康和发育中起着重要作用。在该领域的研究继续增长,许多化合物在多种生物技术应用中被确定为潜在的生物活性产物。关键字:天然化合物;科学计量学;代谢物。恢复真菌EndofíticosS圣微生物que vivem dentro dentro das plantas e stanas e -uma fonte fonte supposposissora demoléculasbiioativas。这些真菌由于能够产生各种物质而引起了对研究的日益兴趣。因此,本研究旨在强调植物中存在的内生真菌的相关性,作为生物活性化合物的来源,这些化合物在生物技术中有多种应用。为此,科学被用作一种方法论,即使用“内植物真菌”,“植物”,“代谢性炎”和“生物技术应用”一词在2015年至2022年之间的暂时切割中。这些真菌由于能够产生各种生物活性化合物而引起了人们对研究的日益兴趣。内生真菌与植物之间的相互作用对于植物生存至关重要,许多真菌化合物具有生物技术潜力。Scientia揭示了有关该主题的出版物数量的增加,尤其是研究和修订。勘探内生真菌专注于具有药用属性的植物家庭。真菌与植物之间的这些复杂的相互作用在植物健康和发育中起着重要作用。在该领域的研究继续增长,许多化合物在各种生物技术应用中都被确定为潜在的生物活性产物。关键字:天然化合物;科学;代谢物。
摘要:阿尔茨海默病 (AD) 是一种损害神经认知功能的神经退行性疾病。乙酰胆碱酯酶 (AChE) 和 β 位 APP 裂解酶 1 (BACE1) 是与 AD 有关的两种主要蛋白质。事实上,目前用于治疗阿尔茨海默病的主要市售药物(多奈哌齐、利凡斯的明和加兰他敏)都是 AChE 抑制剂。然而,由于 AD 有多种促成因素,这些药物均无法逆转或减轻该疾病的病理生理状况。因此,需要开发一种多靶点配体方法来治疗该疾病。在本研究中,通过分子对接研究筛选了植物生物活性化合物的 AChE 和 BACE1 抑制潜力。考虑到它们的对接得分和药代动力学特性,选择柠檬苦素、贝米辛、沙雷他宁 B 和醉茄内酯 A 作为先导化合物。这些蛋白质-配体复合物的分子动力学模拟证实了构象和能量稳定的酶-抑制剂复合物。通过体外酶测定验证了先导化合物的抑制潜力。Withanolide A 抑制 AChE(IC 50 值为 107 μ M)并表现出混合型抑制。在此浓度下,它抑制了 57.10% 的 BACE1 活性,并被认为是最有效的。发现这两种化合物及其粗提取物对 SH-SY5Y 细胞系没有细胞毒性作用。
糖尿病及其并发症代表了全世界对健康问题的极为问题。全球疾病发病率的非凡增加表明,新的,安全,有效和可抗性的治疗方法的发展需要挑战。这种复杂的疾病以高血糖水平为特征,涉及其病因中的许多致病过程。即使背后的分子机制尚不清楚,也广泛认识到,氧化应激,晚期糖化终产物(年龄)和炎症的积累与疾病的发育,进展和相关并发症有关。在这方面,酚类化合物代表了有价值的治疗视角。因此,本综述着重于酚类化合物在与糖尿病相关的氧化应激,年龄产生和炎症中的作用。,我们总结了酚类化合物的抗氧化和抗糖化特性的最新结果,以及在炎症和炎症相关途径上的活性调节与糖尿病相关的炎症和炎症相关途径,即核因子酸,核因子 - κB,核因子基酶/蛋白质蛋白酶氨基糖酶/磷脂酶氨基酶氨基酶氨基酶氨基糖酶(核因子蛋白酶),描述了激酶B信号通路。突出显示,酚类化合物在预防或治疗策略的发展中的抗糖尿病潜力及其相关的复杂性。