您不能为外部表或属于集群的表指定任何类型的表压缩。 您不能为具有 LONG 或 LONG RAW 列的表、由 SYS 模式拥有并驻留在 SYSTEM 表空间中的表或启用了 ROWDEPENDENCIES 的表指定任何类型的压缩。 不建议将 UNIFORM EXTENTS 与混合列压缩一起使用,因为对于大多数工作负载,配置统一区大小没有任何好处。在并行直接加载 (DSS) 中使用统一区时,会导致大量空间浪费并影响全扫描性能。空间浪费是因为在段合并期间数据库无法修剪最后部分使用的区。浪费与并行度 (DOP) 以及区大小呈线性关系。扫描性能也会由于相同的根本原因受到影响 – 大量未使用的块(来自最后一个区)合并到基础段中。 混合列压缩对 HCC 所需的最少数据量没有限制。即使每个段/分区只有几 MB 的数据,HCC 也可以非常有效。但是,在使用较少量的数据(每个段几 MB)和并行加载时,需要注意的是,并行加载有时会使用临时段合并,其中每个加载器进程都会创建一个单独的段,在这种情况下,Oracle 建议每个段/分区有几百 MB。 混合列压缩是为关系数据设计的,不适用于 BLOB(或 CLOB)中的非结构化数据。LOB 最好作为 SecureFiles LOB 存储在 Oracle 数据库中。Oracle 高级压缩的功能高级 LOB 压缩和高级 LOB 重复数据删除可以减少 SecureFiles LOB 所需的存储量。 混合列压缩不会压缩索引或索引组织表 (IOT)。可以使用高级索引压缩 LOW(高级压缩的功能)或前缀压缩(包含在 Oracle Database Enterprise Edition 中)来压缩索引(和 IOT)。 针对混合列压缩表/分区的 DML UPDATE 操作会随着时间的推移减少总体压缩节省,因为通过 DML 操作更新的数据不会压缩到与其他 HCC 压缩数据相同的数据压缩率。 当您更新使用混合列压缩压缩的表中的一行时,该行的 ROWID 可能会发生变化。 在使用混合列压缩压缩的表中,对单行的更新可能会导致多行锁定。因此,写入事务的并发性可能会受到影响。 混合列压缩每个 CU 使用一个锁。或者;您可以选择为压缩单元启用行级锁定。HCC 的默认值为无行级锁定;在 CREATE TABLE 或 ALTER TABLE MOVE 操作期间明确指定行级锁定。HCC 行级锁定是高级压缩的一项功能。
摘要 — 越来越多的人认为,新兴的元宇宙世界依赖于高效的视觉数据压缩技术来实现有效的数据存储、超低延迟交互和无处不在的通信。本文全面介绍了视觉数据压缩技术和标准的最新进展,这些技术和标准在构建元宇宙中可以发挥重要作用。特别是,我们将回顾视觉数据压缩方法和标准,并提出我们对交互式编码如何更有效地支持元宇宙的愿景。最后,我们讨论了元宇宙数据压缩的独特要求和基本挑战,并展望了未来的技术趋势。索引词 — 元宇宙、视觉数据压缩、交互式通信
Wayne W. Stinchcomb 博士的突然离世让我们所有人都深感悲痛。Wayne 对复合材料界,尤其是 D30 委员会的贡献确实非同凡响。作为弗吉尼亚理工大学工程科学与力学系的一名教员,他在教学和研究方面都表现出色。他的杰出教学获得了多个部门教学奖(1975 年和 1976 年的教学优秀证书、1978 年的杰出教育家奖、1984 年的 Frank J. Maher 教育优秀奖)和一项大学级教学奖,即 1975 年的 Sporn 工程学科教学优秀奖。作为一名研究员,Stinchcomb 博士是许多合同和拨款的首席研究员,撰写了许多技术出版物,并编辑了两本书和两个书籍章节。Stinchcomb 博士在学术界之外也非常活跃。1987 年,他被任命为国家研究委员会交通研究委员会委员。在 ASTM 内部,Wayne 于 1982 年至 1988 年担任 ASTM 高模量纤维及其复合材料委员会 D30 主席。1992 年,他被任命为 ASTM 院士,并被表彰
截至发布时,CCSDS 的活跃成员和观察员机构为:成员机构 – 意大利空间局 (ASI)/意大利。 – 英国国家太空中心 (BNSC)/英国。 – 加拿大太空局 (CSA)/加拿大。 – 法国国家空间研究中心 (CNES)。 – 德国航空航天中心 (DLR)/德国。 – 欧洲航天局 (ESA)/欧洲。 – 俄罗斯联邦太空局 (Roskosmos)/俄罗斯联邦。 – 巴西国家太空研究所 (INPE)/巴西。 – 日本宇宙航空研究开发机构 (JAXA)/日本。 – 美国国家航空航天局 (NASA)/美国。观察员机构 – 奥地利航天局 (ASA)/奥地利。 – 比利时联邦科学政策办公室 (BFSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 航空航天技术中心 (CTA)/巴西。 – 中国空间技术研究院 (CAST)/中国。 – 联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦空间研究所 (DSRI)/丹麦。 – 欧洲气象卫星利用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 希腊国家空间委员会 (HNSC)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – KFKI 粒子与核物理研究所 (KFKI)/匈牙利。 – 韩国航空宇宙研究院 (KARI)/韩国。 – MIKOMTEK:CSIR (
对应原则指出,经典力学从适当的限制中源自量子力学。然而,除了这个启发式规则之外,信息理论的观点表明,经典的力学是量子现实的压缩,较低信息的表示。量子力学通过叠加,纠缠和相干性来编码更多的信息,这些信息由于反应,相位平均和测量而丢失,将系统降低到经典概率分布。使用kolmogorov的复杂性来量化此转变,其中经典系统需要信息(n)位的信息,而量子描述仅需要O(2 n),显示复杂性的指数降低。进一步的合理性来自Ehrenfest的定理,该定理可确保量子期望值遵守牛顿的定律和路径的整体抑制,从而消除了当S≫≫时消除了非经典轨迹。因此,我们认为,我们认为经典力学是一种有损的,计算上降低的量子物理学的编码,而不是系统的量子相关性丧失,我们认为经典力学是一种有损的,计算上的编码。
摘要:本文收集了两种类型的医学图像,它们来自 CT 扫描和超声系统,目的是在保持图像质量的情况下减少表示医学图像所需的位数。医学成像对疾病诊断和手术准备有很大影响。另一方面,由于医学图像数据量巨大,存储和传输是一个重要问题。例如,每张 CT 图像切片为 512 x 512,数据集由 200 到 400 张图像组成,平均数据量为 150 MB。对医学数据进行有效压缩可以解决存储和传输问题。医学图像使用提出的算法进行压缩,该算法包括两种技术,即离散余弦变换 DCT 和矢量量化 VQ。本文从收集医学图像开始,使用 MATLAB 通过 DCT-QV 开发压缩算法,并通过使用峰值信噪比 PSNR、均方误差 MSE、压缩比 CR 和每像素比特 BPP 测量原始图像和压缩图像之间的差异来评估这些技术的性能。实验结果表明,所提算法压缩后的图像质量较高,量化水平达到30%以上,压缩率达到可接受水平。
众所周知,20 世纪 60 年代半导体计算机和太空计划的出现迅速将数字图像处理领域带入公众视野。从那时起,该领域经历了快速发展,并渗透到现代技术的各个方面。自 20 世纪 80 年代初以来,数字图像序列处理一直是一个颇具吸引力的研究领域,因为作为图像集合的图像序列可能比单个图像帧提供更多信息。图像序列处理所需的计算复杂性和内存空间的增加越来越容易实现。这是由于技术不断进步,尤其是与 VLSI 行业和信息处理相关的技术不断进步,带来了更先进、更可实现的计算能力。除了数字化领域的图像和图像序列处理外,自 20 世纪 70 年代以来,传真传输已从模拟转换为数字。然而,20 世纪 70 年代末和 80 年代初提出的高清晰度电视 (HDTV) 概念仍然是模拟的。这种情况后来发生了变化。在美国,第一个高清数字系统提案出现在1990年,由电视行业组成的高级电视标准委员会(ATSC)推荐了由大联盟七个成员共同制定的数字高清电视系统作为标准,并于1997年获得美国联邦通信委员会(FCC)的批准。当今世界流行的
Burckhardt Compression 的 Laby®-GI 压缩机系统在液化天然气 (LNG) 运输船的燃料供应中发挥着重要作用。在运输过程中,液化气体会升温,导致少量蒸发,形成蒸发气体,然后重新液化并送回油箱或用作运输船发动机的燃料。液化系统和柴油发动机都需要高达 300 bar 的压力。这就是为什么 Burckhardt Compression 为 LNG 应用开发了特定的解决方案,这些解决方案可在低温高压下压缩气体,并满足公海使用的严格要求。Burckhardt Compression 系统的独特卖点是密封的曲轴箱,可防止甲烷逸出到大气中。报告期内,已安装的 Laby®- GI 系统首次实现 150 万小时运行时间,体现出其高可靠性。
– 奥地利航天局 (ASA)/奥地利。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 航空航天技术中心 (CTA)/巴西。 – 中国空间技术研究院 (CAST)/中国。 – 联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 通信研究实验室 (CRL)/日本。 – 丹麦空间研究所 (DSRI)/丹麦。 – 欧洲气象卫星利用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 联邦科学、技术和文化事务局 (FSST&CA)/比利时。 – 希腊国家空间委员会 (HNSC)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 加拿大工业部/通信研究中心 (CRC)/加拿大。 – 空间与航天科学研究所 (ISAS)/日本。 – 空间研究所 (IKI)/俄罗斯联邦。 – KFKI 粒子与核物理研究所 (KFKI)/匈牙利。 – MIKOMTEK:CSIR (CSIR)/南非共和国。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 美国国家海洋与大气管理局 (NOAA)/美国。 – 国家空间计划办公室 (NSPO)/台北。 – 瑞典空间公司 (SSC)/瑞典。 – 美国地质调查局 (USGS)/美国。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。