光声成像 (PAI) 是一种非侵入性混合成像方式,可提供丰富的光学对比度和高深度分辨率比的深层组织成像。体内存在的内源性发色团(如血红蛋白、脂质、黑色素等)由于在某些光学窗口具有强光吸收性而提供强大的光声对比度。为了进一步提高 PAI 的性能,研究人员开发了几种外源性造影剂,如金属纳米粒子、碳基纳米材料、量子点、有机小分子、半导体聚合物纳米粒子等。这些外源性造影剂不仅有助于提高成像对比度,而且还使靶向分子成像成为可能。在这篇评论文章中,我们首先讨论了具有内源性造影机制的最先进的 PAI 技术。然后,我们概述了用于体内成像应用的外源性光声造影剂的最新进展。最后,我们介绍了现有 PA 造影剂的优缺点以及基于造影剂的 PAI 在生物医学应用中的未来挑战。
光电器件的透明导电电极 (TCE) 设计需要在高导电性和透射率之间进行权衡,从而限制了其效率。本文展示了迄今为止最好的 TCE,其新颖的 TCE 制造方法可以有效缓解这种权衡:集成金属的单片高对比度光栅 (metalMHCG)。metalMHCG 比其他 TCE 具有更高的电导率,同时具有透射和抗反射特性。本文重点介绍红外光谱 TCE,这对于传感、热成像和汽车应用至关重要。然而,由于自由载流子吸收率升高,它们对可见光谱的要求比 TCE 高得多。它展示了创纪录的 75% 非偏振光绝对透射率,相对于普通 GaAs 基板的透射率达到创纪录的 108%。它实现了更大的偏振光绝对透射率,达到 92% 或 133% 的相对透射率。尽管透射率创下了历史新高,但金属 MHCG 的薄层电阻却是有史以来最好的,比任何其他 TCE 都低几倍,范围从 0.5 到 1 𝛀 Sq − 1。
定量2D和3D期对比MRI:血流和血管壁参数的优化分析A.德国弗雷堡(Freiburg)简介:由于时空分辨率和SNR的有限,CINE相对比(PC)-MRI数据的量化很具有挑战性。此处介绍的方法结合了速度及其局部衍生物的“格林定理”和B型插值插值,以提供优化的血流和容器壁参数的定量。结果,除血流量参数(如流量量或流体面积)外,还可以从数据中计算出矢量壁剪应力(WSS)和振荡剪切指数(OSI)的空间和时间变化。心血管系统的功能诊断是不断获得兴趣的(1),在这种情况下,WSS是内皮细胞功能的重要决定因素(2-4)。流量和壁参数定量,其中有19个健康志愿者在8个平面中,沿着整个胸主动脉分布,使用高分辨率平面2D和较低分辨率的体积3D Cine PC-MRI,并具有3个方向速度编码。合成流数据,模式间可变性和观察者间的可变性用于评估该方法的准确性。据我们所知,这些结果构成了对完整动脉切片的血流参数和矢量WSS的体内分析的首次报告。1。2,左)。2,右)。Methods: All experiments were performed at 3T (Trio, Siemens, Germany) using a respiration controlled and ECG gated rf-spoiled gradient echo sequence with 3-directional velocity encoding in 2D ( 2D-CINE-3dir.PC : spatial resolution: 1.24-1.82 x 1.25-1.82 x 5 mm 3 , temporal resolution: 24.4 ms, Venc = 150 cm/s)和3D(3D-Cine-3ddir.pc:空间分辨率:2.71-2.93 x 1.58-1.69 x 2.60-3.5 mm 3,时间分辨率:48.8 ms,48.8 ms,Venc = 150 cm/s)(5)(5)。在沿胸主动脉分布的8个平面上进行进行壁分析(图 3,右)使用2d-cine-3ddir.pc和3d-cine-3ddir.pc进行比较,如图所示 数据分析和细分集成在基于MATLAB(美国Mathworks)的内部分析工具(6)中。 对于每个Cine时间框架,使用B-Spline轮廓分割了血管腔(图1,MID)。 随后的速度数据的立方B型插值(7)提供了插值速度及其在容器轮廓处的局部衍生物(图1,底部)。 基于分析血管腔轮廓,“ Green's Theorem”和B-Spline插值,面积和流量是从单个积分中有效且准确地计算出来的。 WSS载体是通过假设横向分析平面而没有流过容器壁的变形张量(8)的变形张量。 流量定量工具已通过各种分辨率和19位健康志愿者的合成抛物线流数据进行评估。 结果:系统多样化的空间分辨率的影响表明,WSS受到更大的影响,而总流量保持相对恒定(图 参考:(1)Y. Richter和E.R.进行壁分析(图3,右)使用2d-cine-3ddir.pc和3d-cine-3ddir.pc进行比较,如图数据分析和细分集成在基于MATLAB(美国Mathworks)的内部分析工具(6)中。对于每个Cine时间框架,使用B-Spline轮廓分割了血管腔(图1,MID)。随后的速度数据的立方B型插值(7)提供了插值速度及其在容器轮廓处的局部衍生物(图1,底部)。基于分析血管腔轮廓,“ Green's Theorem”和B-Spline插值,面积和流量是从单个积分中有效且准确地计算出来的。WSS载体是通过假设横向分析平面而没有流过容器壁的变形张量(8)的变形张量。流量定量工具已通过各种分辨率和19位健康志愿者的合成抛物线流数据进行评估。结果:系统多样化的空间分辨率的影响表明,WSS受到更大的影响,而总流量保持相对恒定(图参考:(1)Y. Richter和E.R.表中给出了流量,平均WSS和圆周WSS的百分比。2D和3D-Cine-PC之间的各种时空分辨率导致流量和面积的相对差异在18%以下,但WSS和OSI的相对误差较高,而OSI则为45%和65%(图。说明了我们方法对WSS空间分布进行详细评估的潜力,图3显示了基于2D和3D数据的一名志愿者的WSS向量和OSI。在上升主动脉(切片1)和主动脉弓(切片3)中,WSS矢量呈现出与主动脉中螺旋流量模式相似的实质性右手圆周分量。讨论:此处介绍的方法旨在使用Green的定理和Cubic B-Spline插值来量化血流和血管壁参数。与假设血流模型的其他方法相反(例如抛物面(9)或数值流仿真(10)),我们的方法不是基于关于流量轮廓的限制性假设。简单的参数,例如流量量,即使对于低分辨率数据也可以准确量化,而诸如WSS之类的派生参数则受到时空分辨率的限制。尽管WSS值在3D-Cine-3dir.pc中被系统地低估了,但志愿者之间的高一致性表明了对相对病理WSS改变的分析的潜在WSS估计,如最初的患者结果所示。Edelman,《流通》 113:2679-2682(2006)(2)Cheng C.等,循环113(23):2744-2753(2006)(2006)(3)Wentzel J.J.等,J Am Coll Cardiol。 45:846-54(2005)(4)Davies PF,Physiol。 修订版Edelman,《流通》 113:2679-2682(2006)(2)Cheng C.等,循环113(23):2744-2753(2006)(2006)(3)Wentzel J.J.等,J Am Coll Cardiol。45:846-54(2005)(4)Davies PF,Physiol。修订版我们的WSS测量值与源自相比的MRI的下降和腹主动脉(3,11-13)的发表结果非常吻合,该结果在心脏周期中提供了相似的平均WSS值(0.18至0.95至0.95 N/M 2)。对WSS沿主动脉的分析表明,WSS的相关圆周成分的存在为10-20%,这表明必须考虑WSS的向量性质以完全表征主动脉中的壁剪力。75:519-560(1995)(5)Markl M.等,J Magn Reson IM。 25:824-831(2007)。 (6)Stalder A. F.等,Proc。 ISMRM流动和运动研讨会,纽约(2006)(7)Unser M.,IEEE信号过程。 mag。 16 22–38(1999)(8)Papathanasopoulou P.等,J。Magn。 共振。 im。 17(2):153-162(2003)(9)Oyre S.等,Magn。 共振。 Med。 40:645-655(1998)(10)Shojima等,中风35:2500-2505(2004)(11)Moore Je Jr.等,动脉粥样硬化110:225-40(1994)(1994)(1994)(12) 32:128 –3475:519-560(1995)(5)Markl M.等,J Magn Reson IM。25:824-831(2007)。 (6)Stalder A. F.等,Proc。 ISMRM流动和运动研讨会,纽约(2006)(7)Unser M.,IEEE信号过程。 mag。 16 22–38(1999)(8)Papathanasopoulou P.等,J。Magn。 共振。 im。 17(2):153-162(2003)(9)Oyre S.等,Magn。 共振。 Med。 40:645-655(1998)(10)Shojima等,中风35:2500-2505(2004)(11)Moore Je Jr.等,动脉粥样硬化110:225-40(1994)(1994)(1994)(12) 32:128 –3425:824-831(2007)。(6)Stalder A. F.等,Proc。ISMRM流动和运动研讨会,纽约(2006)(7)Unser M.,IEEE信号过程。mag。16 22–38(1999)(8)Papathanasopoulou P.等,J。Magn。共振。im。17(2):153-162(2003)(9)Oyre S.等,Magn。共振。Med。40:645-655(1998)(10)Shojima等,中风35:2500-2505(2004)(11)Moore Je Jr.等,动脉粥样硬化110:225-40(1994)(1994)(1994)(12) 32:128 –34
摘要 尽管显示技术取得了进步,但许多现有应用仍依赖于使用较旧的、有时是过时的显示器收集的人类感知的心理物理数据集。因此,存在一个基本假设,即此类测量可以延续到更现代技术的新观看条件中。我们已经进行了一系列心理物理实验,以使用最先进的 HDR 显示器探索对比敏感度,不仅考虑了刺激的空间频率和亮度,还考虑了它们周围的亮度水平。从我们的数据中,我们得出了一个新颖的环绕感知对比敏感度函数 (CSF),它可以更准确地预测人类对比敏感度。我们还提供了一个实用版本,它保留了我们完整模型的优势,同时实现了轻松的向后兼容性,并在许多使用 CSF 模型的现有应用程序中始终产生良好的结果。我们展示了使用源自 CSF 的传递函数、色调映射和改进的视觉差异预测准确度进行有效 HDR 视频压缩的示例。
• 入选候选人将在根特大学从事 MSCA-DN 项目 36 个月,最长可延长 12 个月以完成博士学位。 • 根据 MSCA 津贴和主办机构的规定,博士候选人将获得有竞争力的薪酬。根特大学已获得以下欧盟补助金以招募博士候选人 (DC):每月生活津贴 3,400 欧元;每月流动津贴 600 欧元;每月家庭津贴 660 欧元(仅在适用时)。请注意,最终的月薪总额将从上述金额中扣除所有由雇主承担的强制性国家劳动税(社会保障等)。此外,还提供资金用于技术和个人技能培训以及参加国际研究活动。 • 预计开始日期:2025 年 4 月至 9 月之间。我们鼓励届时毕业的最后一年硕士生申请。有关 IQ-BRAIN 职位的一般信息文件中提供了更多信息。
弥漫性相关光谱(DCS)是一种越来越流行的非侵入性深层组织血流监测的新兴方式。它对来自单个斑点的快速波动光子计数signals进行了自相关分析。在这封信中,我们表明,可以从CCD摄像机获得的斑点的空间分布进行更简单的分析中获得相同级别的深层组织流量信息,我们将其命名为diffuse speckle对比度分析(DSCA)。均显示了流动幻像实验和体内袖口遮挡数据。DSCA可以被视为一种新的光学方式,结合了DCS和激光斑点对比度(LSCI),它利用了简单的仪器和分析,但对深层组织的流动很敏感。©2013美国光学学会
摘要:自1988年以来,临床医生就进行了磁共振成像(MRI)对比剂(CAS)的施用,以提高MR图像的清晰度和解释性。CAS是用于诊断各种病理的临床标准,例如脑部病变的检测,血管的可视化和软组织疾病的评估。然而,由于与基于Gadolinium的对比剂的安全相关的持续关注,已针对发展具有更好的松弛性,降低毒性并最终结合治疗方式的混合剂的努力。在这种情况下,嫁接(或封装)顺磁金属或螯合物在(内部)基于碳的纳米颗粒上是一种直接的方法,可以使能够产生具有较高松弛性的对比剂,同时为纳米粒细胞的功能提供广泛的可调性。在这里,我们提供了定义基于兰谷的对比剂的功效的参数以及纳米基基基造影剂融合了顺磁物质的效果的功效。
材料和方法 这项回顾性单中心研究考虑纳入 2019 年 11 月至 2021 年 3 月在 Gustave Roussy 癌症园区(法国维尔瑞夫)获取的共 250 张多参数脑 MRI。定义了独立的训练(107 例,年龄 55 岁±14 岁,58 名女性)和测试(79 例,年龄 59 岁±14 岁,41 名女性)样本。患者患有神经胶质瘤、脑转移、脑膜瘤或无增强病变。在所有病例中均获取了具有可变翻转角的梯度回波和涡轮自旋回波对比后 T1 序列。对于形成训练样本的病例,还获取了使用 0.025 mmol/kg 造影剂注射的“低剂量”对比后梯度回波 T1 图像。以标准剂量 T1 MRI 为参考,训练了一个深度神经网络来合成增强低剂量 T1 采集。训练完成后,对比增强网络用于处理测试梯度回波 T1 图像。然后由两名经验丰富的神经放射科医生进行读片,以评估原始和处理后的 T1 MRI 序列的对比增强和病变检测性能,以快速自旋回波序列为参考。结果对于增强病变的病例,处理后图像的对比噪声比(44.5 比 9.1 和 16.8,p<.001)、病变与脑组织比(1.66 比 1.31 和 1.44,p<.001)和对比增强百分比(112.4% 比 85.6% 和 92.2%,p<.001)均优于原始梯度回波和参考快速自旋回波 T1 序列。两位读者都更喜欢处理后的 T1 的整体图像质量(平均评分为 3.4/4 比 2.7/4,p<.001)。最后,对于大于 10 毫米的病变,所提出的处理方法将梯度回波 T1 MRI 的平均灵敏度从 88% 提高到 96%(p=.008*),而误检率则没有差异(两种情况下均为 0.02/例,p>.99)。考虑所有大于 5 毫米的病变时观察到了相同的效果:灵敏度从 70% 提高到 85%(p<.001*),而误检率保持相似(0.04/例 vs 0.06/例,p=.48)。如果包括所有病变,无论其大小如何,原始和处理后的 T1 图像的灵敏度分别为 59% 和 75%(p<.001*),相应的误检率为 0.05/例和 0.14/例(p=.06)。
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
摘要:单片高对比度光栅 (MHCG) 由单片层中图案化的一维光栅组成,可提供高达 100% 的光功率反射率,并且可以在现代光电子学中使用的几乎任何半导体和介电材料中制造。MHCG 可实现单片集成、偏振选择性和多功能相位调谐。它们可以比分布式布拉格反射器薄 10 到 20 倍。MHCG 的亚波长尺寸大大降低了确保 MHCG 条纹侧壁光滑度的可能性,并使在蚀刻过程中精确控制 MHCG 条纹横截面的形状变得困难。问题在于,改进蚀刻方法以获得设计所假设的完美横截面形状是否更有利,或者是否有可能使用给定蚀刻方法提供的形状找到能够实现高光功率反射的几何参数。在这里,我们进行了一项数值研究,该研究由使用多种常见的表面纳米级成型方法在不同材料中制造的 MHCG 的实验表征支持。我们证明具有任意横截面形状的 MHCG 条纹都可以提供接近 100% 的光功率反射率,这大大放宽了它们的制造要求。此外,我们表明,对于准梯形横截面的 MHCG,可以实现超过 99% 的光功率反射率和超过 20% 的创纪录光谱带宽。我们还表明,如果波纹幅度小于 MHCG 周期的 16%,MHCG 条纹的侧壁波纹对 MHCG 光功率反射的影响很小。使用最新的表面蚀刻方法可以实现这种条纹制造精度。我们的研究结果对于设计和生产采用 MHCG 的各种光子器件具有重要意义。横截面形状的灵活性有利于可靠地制造高反射率亚波长光栅镜。这反过来又将使制造单片集成的高品质因数光学微纳腔器件成为可能。关键词:单片高对比度光栅、亚波长光栅、光功率反射