摘要目的:提出一种消除刺激瞬态的新方法,该方法利用了电兴奋的神经组织的绝对难治时期。背景:电刺激通常会产生明显的信号伪像,这些信号伪影可能会掩盖重要的生理信号。从这些信号中删除伪像并了解潜在信息可以提供客观的电路参与度,并有可能驱动神经调节研究和疗法的范围。方法:我们对五个连续的帕金森氏病患者进行了颅内生理研究,他们接受了深度脑刺激(DBS)手术,这是他们常规护理的一部分。单极刺激(阴极或阳极)通过DBS电极成对通过一系列刺激间间隔传递。来自相邻未使用的电极触点的记录使用宽带采样和精确的同步来在绝对耐火周期内生成刺激瞬态的稳健模板。然后以不同的间隔从记录中减去这些刺激瞬变的模板,以提取和分析残余神经电位。结果:掉伪影后,残留信号表现出绝对和相对难治性的表情,并指示神经活动的时间。阴极和阳极DBS脉冲产生了局部组织激活的不同模式,显示出与先前刺激的相位独立性。阴极刺激比阳极刺激产生的局部组织反应更强,与临床观察到较低的激活阈值的临床观察。可检测到的可检测神经反应发生在短峰潜伏期(刺激后0.19至0.38 ms),在去除前完全或部分被刺激伪影遮住了。然而,阴极和阳极脉冲引起的伪影模式等效但相反。解释:拟议的伪影去除技术通过允许直接测量局部组织反应而无需刺激极性反转,模板缩放或专门的过滤器来增强先前的方法。这种方法可以整合到未来的神经化系统中,以可视化刺激诱发的神经潜力,否则这些神经潜力将被刺激伪像所掩盖。
单细胞RNA测序(SCRNA-SEQ)在单细胞水平上对全转录组基因表达提供了前所未有的见解。细胞聚类长期以来在SCRNA-SEQ数据的分析中已建立,以识别具有相似表达谱的细胞组。然而,细胞聚类在技术上具有挑战性,因为原始的SCRNA-SEQ数据具有各种分析问题,包括高维度和辍学值。现有研究开发了深度学习模型,例如图形机器学习模型和基于对比度的学习模型,用于使用SCRNA-SEQ数据进行细胞聚类,并总结了将细胞聚类的无监督学习到人介入的格式中。虽然细胞聚类的进展是深刻的,但我们没有更接近找到一个简单而有效的框架来学习鲁棒聚类所需的高质量表示。在这项研究中,我们提出了SCSIMGCL,这是一个基于图形对比的学习范式的新型框架,用于图形神经网络的自我监督预处理。该框架促进了对细胞聚类至关重要的高质量表示的产生。我们的SCSIMGCL结合了细胞细胞图结构和对比度学习,以增强细胞聚类的性能。对模拟和实际SCRNA-SEQ数据集的广泛实验结果表明了所提出的SCSIMGCL的优势。此外,聚类分配分析证实了SCSIMGCL的一般适用性,包括最新的聚类算法。所提出的SCSIMGCL可以作为开发用于细胞聚类工具的从业者的强大框架。此外,消融研究和超参数分析表明,在自我监督的学习环境中,决策的鲁棒性表明了我们的网络体系结构的功效。SCSIMGCL的源代码可在https://github.com/zhangzh1328/scsimgcl上公开获得。
开放访问引用:Lahari R. Shetty,Kaushik Nayak,Priyanka博士。对比培养基对通过定量计算机断层扫描测量的腰椎骨矿物质密度的影响。Ethiop J Health Sci .2024; 34(5):359.Doi:http:// dx.doi.org/ 10.4314/ ejhs.v34i5.3收到:接受:2024年3月7日接受:2024年8月17日,2024年发表:9月1日:2024年9月1日,2024年,2024年版本:这是根据Creative Commons归因许可条款分发的开放式访问文章,该条款允许在任何媒介中不受限制地使用,分发和复制,前提是原始作者和来源被认为。资金:无竞争利益:作者宣布,该手稿均由所有作者以其形式批准,并且不存在竞争利益。隶属关系:
摘要:许多机器人学习方法首先从一组人类示范中推断出奖励功能。要学习良好的奖励,有必要在确定应如何使用这些功能来计算奖励之前确定环境的哪些功能。联合特征和奖励学习的端到端方法(例如,使用深网或程序合成技术)通常会产生对虚假国家敏感的脆弱奖励功能。相比之下,人类通常可以通过将强大的先验纳入少量的示范中,从而可以从少量的示范中学习,以了解示威的特征可能对感兴趣的任务有意义。在从新演示中学习时,我们如何构建利用这种背景知识的机器人?本文介绍了一种名为藻类的方法(来自[对比]解释的自适应语言引导的处理),该方法在使用语言模型来迭代地识别所需的人类卑鄙的特征之间交替,然后识别出所需的人类卑鄙的特征,然后识别出标准的逆增强学习技术,将权重分配给这些特征。在各种模拟和现实世界机器人环境中进行的实验表明,藻类仅使用少量的示例来学习在可解释的特征上定义的可通用奖励功能。重要的是,藻类可以识别何时缺少功能,然后提取并定义这些功能而无需任何人类输入,从而可以快速有效地获得对用户行为的丰富表示形式。
在本文中,我们提出了一种新颖的多模态对比学习框架,利用量子编码器整合脑电图 (EEG) 和图像数据。这一开创性的尝试探索了将量子编码器整合到传统的多模态学习框架中。通过利用量子计算的独特属性,我们的方法增强了表征学习能力,为同时分析时间序列和视觉信息提供了一个强大的框架。我们证明量子编码器可以有效捕捉脑电图信号和图像特征中的复杂模式,从而促进跨模态的对比学习。这项工作为将量子计算与多模态数据分析相结合开辟了新途径,特别是在需要同时解释时间和视觉数据的应用中。
摘要。传统的单对象跟踪任务正在经历新的转型浪潮,尤其是随着语义缺乏的出现,这导致了视觉跟踪任务的兴起。但是,将Vi-Sual Tracker与自然语言描述相结合的先前方法倾向于依靠文本描述的全局表示,而较少考虑文本描述和Vi-Sual外观之间的精细连接。本文提议利用双向交叉注意模块来捕获语言和视觉特征之间的连接,这些连接进一步投影为密集的语义反映以保持对齐方式。为了保持搜索区域与耦合的自然语言之间的语义同意,并使融合功能保持一致,本文提出了一种新颖的密集性对比度学习损失,以弥合文本和视觉方式之间的语义差距,并以密集的形式对齐。所提出的框架在跟踪包含自然语言描述的数据集(例如TNL2K和OTB99-LANG)方面实现了有希望的结果。我们的方法提供了一种新颖的解决方案,用于代表和对齐单个对象跟踪任务的跨模式信息,并可能激发该领域的进一步研究。
抽象的各种故障会导致电动机故障,从而导致停机时间和资产损失。故障检测技术在行业中非常需要预测和防止此类故障。机器学习的最新进展已启用数据驱动的模型,这些模型可以从电动机中监视的信号中识别故障。但是,这些信号可能很复杂,并且表明故障的特征是微妙的。因此,需要提取与信号故障相关的信息特征的有效方法。在本文中,我们探讨了对比度学习在检测相位电流信号的轴承断层中的使用。我们开发了一个模型架构,该模型结构由两个部分,一个特征提取器和一个分类器组成,其中特征提取器使用监督的对比度学习进行了预训练。在Pader-Born University轴承故障数据集上进行了测试,我们的模型达到了87%的高故障分类精度,这表现优于常规机器学习模型。我们还进行了消融测试,以证明该模型中基于对比的学习培训的重要性。通过研究模型的分类结果和提取的特征,我们进一步探讨了对比度学习在提取区分不同类别的特征中的效果。我们预计对比度学习可以奠定更准确的故障检测模型的基础,并将其扩展到其他实际的故障检测任务。
传统的推荐系统(例如矩阵分解方法)主要集中于学习共享密集的设备空间,以表示项目和用户偏好。sub-sub-sub,诸如RNN,GRUS和最近的序列模型在顺序推荐的任务中出现并出色。此任务需要了解用户历史交互中存在的顺序结构,以预测他们可能喜欢的下一个项目。基于大型语言模型(LLM)在各种任务中的成功,最近使用在庞大的文本中鉴定的LLM进行了研究,以进行顺序建议。要使用LLM进行顺序推荐,用户交互的历史记录和模型对下一个项目的预测都以文本形式表示。我们提出了CALREC,这是一种两阶段的LLM登录框架,它使用两种对比性损失和语言建模损失的混合物以两位较高的方式对经过验证的LLM进行了验证:LLM首先是在来自多个域中的数据混合物上进行的,随后是一个目标域芬特芬特登录。我们的模型极大地胜过许多最先进的基准( + 37%的回忆@1和ndcg@10中的24%),我们的系统消融研究表明,(i)两种固定阶段至关重要,当结合使用时,我们在相反的绩效中获得了相似的绩效,以及(ii)对比的一致性在目标域中有效地探索了我们的实验。
从非侵入性脑电图 (EEG) 重建自然语言作为脑机接口 (BCI) 的语言解码技术有着巨大的应用前景。然而,基于 EEG 的语言解码仍处于起步阶段,面临着一些技术问题,例如:1)缺乏能够有效结合跨模态(EEG 和文本之间)自学习与 EEG 特征或文本序列的模态内自重建的混合策略;2)未充分利用大型语言模型 (LLM) 来增强基于 EEG 的语言解码。为了解决上述问题,我们提出了对比 EEG-T 文本询问自动编码器 (CET-MAE),这是一种新颖的模型,它通过专用的多流编码器在 EEG 和文本之间和内部协调复合自监督学习。此外,我们开发了一个名为 E2T-PTR(使用预训练可迁移表示进行 EEG 到 T 文本解码)的框架,该框架利用预训练模块以及来自 CET-MAE 的 EEG 流,并进一步使 LLM(特别是 BART)能够从 EEG 序列中解码文本。在流行的文本诱发 EEG 数据库 ZuCo 上进行的全面实验证明了 E2T-PTR 的优越性,它在 ROUGE-1 F1 和 BLEU-4 得分上分别比基线框架高出 8.34% 和 32.21%。我们提出的预训练 EEG-Text 模型显示出改善涉及 EEG 和文本的下游任务的潜力。这为其在内部语音 BCI 范式中的应用开辟了有希望的途径,值得进一步研究。