Almaty,2025年1月29日 - 股份公司Kaspi.kz(“ Kaspi.kz”)(NASDAQ:KSPI)宣布,已完成40,000,000级A级A和173,246,220级B股的收购(“交易”)(“交易”) (NASDAQ:HEP)根据股票购买协议(“协议”)于2024年10月17日在Kaspi.kz中签订了hepiburada的创始人兼控制股东,包括Hepiburada的创始人兼控股股东,VuslatDoğanSabancı,begümmMydoğandoğandoğandoğandoğandoğandoğando会(“卖方”)。Kaspi.kz的首席执行官兼联合创始人Mikheil Lomtadze评论说:“我们很高兴与Türkiye的主要电子商务公司之一Hepsiburada联手。将我们的可寻址市场扩展到1亿人口是Kaspi.kz的重要战略优先事项。Hepsiburada的管理团队专注于盈利的增长,而不是不惜一切代价增长。展望未来,我们将利用Kaspi.kz和Hepsiburada团队带来的合并知识和技术,以便在未来迅速,可持续的底线增长。像Kaspi.kz一样,Hepsiburada是一家高度企业家的公司和本土电子商务冠军,由有远见的创始人建造。共同在Türkiye和Hazakhstan中推进电子商务和数字服务的巨大潜力,其共同目标是改善消费者和商人的生活。我对Hepsiburada的愿景一直是可持续增长和增加价值创造的一种。我们认为,哈萨克斯坦和türkiye的中小企业和企业家将从我们国家之间以及整个更广泛地区的新机会中受益。” Hepsiburada的创始人HanzadeDoğan评论说:“如今,Hepsiburada开始了与Kaspi.kz的激动人心的未来之旅。kaspi.kz,重点是通过创新的解决方案和作为纳斯达克上市公司的地位改善人们的生活,是帮助Hepsiburada在其下一阶段增长的理想合作伙伴。
3.09.1 简介 204 3.09.1.1 Leloir 与非 Leloir GT 及其供体底物 204 3.09.1.2 基于序列的 CAZy 家族和 GT 的结构分类 205 3.09.1.3 GT 的机制 205 3.09.1.3.1 反转 GT 机制 205 3.09.1.3.2 保留 GT 机制 206 3.09.2 GT 活性的抑制 208 3.09.2.1 GT 抑制剂的类型 208 3.09.2.1.1 GT 底物类似物和过渡态类似物 208 3.09.2.1.2 GT 的糖基化抑制剂 211 3.09.2.1.3 天然产物作为 GT 抑制剂 212 3.09.2.1.4 结构多样的合成小分子作为 GT 抑制剂 214 3.09.2.2 识别 GT 抑制剂的高通量筛选策略 215 3.09.2.2.1 通过核苷酸释放测量 GT 活性的偶联酶测定 215 3.09.2.2.2 基于碳水化合物微阵列的 GT 测定 216 3.09.2.2.3 基于荧光偏振的 GT 测定 217 3.09.2.2.4 使用荧光团标记的糖供体直接荧光测定 GT 活性 219 3.09.2.2.5 糖苷酶依赖性荧光偶联 GT 测定 219 3.09.3 GT 活性工程 221 3.09.3.1 使用合理的蛋白质设计修改 GT 活性 221 3.09.3.1.1 GT 的定向诱变 221 3.09.3.1.2 域交换生成 GT 嵌合体 222 3.09.3.2 高通量筛选策略及其在发现和设计 GT 活性中的应用 225 3.09.3.2.1 用于天然产物 GT 定向进化的基于平板的荧光猝灭策略 225 3.09.3.2.2 通过 FACS 进行细胞内荧光捕获以筛选 GT 活性 225 3.09.3.2.3 在基于平板和颗粒的体外试验以及基于 FACS 的体内试验中利用聚糖结合蛋白筛选 GT 活性 227 3.09.4 结论 228 参考文献 228
3学习步态过渡的基于模型的最佳控制21 3.1动机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 3.2相关文献。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 3.3基于模型的控制器。。。。。。。。。。。。。。。。。。。。。。。。。。24 3.3.1体系结构概述。。。。。。。。。。。。。。。。。。。。。。。25 3.3.2步态过渡机制。。。。。。。。。。。。。。。。。。。。。25 3.4学习步态适应政策。。。。。。。。。。。。。。。。。。。。。26 3.4.1控制步态时间。。。。。。。。。。。。。。。。。。。。27 3.4.2 MDP定义。。。。。。。。。。。。。。。。。。。。。。。。。。。28 3.5结果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 3.5.1适应的步态和速度跟踪。。。。。。。。。。。。。。。31 3.5.2能源效率。。。。。。。。。。。。。。。。。。。。。。。。。。32 3.5.3与相关工作的比较。。。。。。。。。。。。。。。。。。33 3.5.4消融研究。。。。。。。。。。。。。。。。。。。。。。。。。。34 3.6结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36
1 美国橡树岭国家实验室,田纳西州橡树岭37831,美国2计算科学与工程部,橡树岭国家实验室,田纳西州橡树岭,田纳西州37831,美国3个中子散射部 94115, USA 5 Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom 6 Institut Laue-Langevin, 38042 Grenoble Cedex 9, France 7 Faculty of Physics, Adam Mickiewicz University, 61-614 Pozna´n, Poland 8 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,美国9量子科学中心,橡树岭国家实验室,田纳西州37831,美国10 Shull-Wollan Center,Oak Ridge National Laboratory,田纳西州田纳西州37831,美国(日期为2021年5月18日)美国橡树岭国家实验室,田纳西州橡树岭37831,美国2计算科学与工程部,橡树岭国家实验室,田纳西州橡树岭,田纳西州37831,美国3个中子散射部 94115, USA 5 Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom 6 Institut Laue-Langevin, 38042 Grenoble Cedex 9, France 7 Faculty of Physics, Adam Mickiewicz University, 61-614 Pozna´n, Poland 8 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,美国9量子科学中心,橡树岭国家实验室,田纳西州37831,美国10 Shull-Wollan Center,Oak Ridge National Laboratory,田纳西州田纳西州37831,美国(日期为2021年5月18日)美国橡树岭国家实验室,田纳西州橡树岭37831,美国2计算科学与工程部,橡树岭国家实验室,田纳西州橡树岭,田纳西州37831,美国3个中子散射部 94115, USA 5 Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom 6 Institut Laue-Langevin, 38042 Grenoble Cedex 9, France 7 Faculty of Physics, Adam Mickiewicz University, 61-614 Pozna´n, Poland 8 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,美国9量子科学中心,橡树岭国家实验室,田纳西州37831,美国10 Shull-Wollan Center,Oak Ridge National Laboratory,田纳西州田纳西州37831,美国(日期为2021年5月18日)美国橡树岭国家实验室,田纳西州橡树岭37831,美国2计算科学与工程部,橡树岭国家实验室,田纳西州橡树岭,田纳西州37831,美国3个中子散射部 94115, USA 5 Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom 6 Institut Laue-Langevin, 38042 Grenoble Cedex 9, France 7 Faculty of Physics, Adam Mickiewicz University, 61-614 Pozna´n, Poland 8 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,美国9量子科学中心,橡树岭国家实验室,田纳西州37831,美国10 Shull-Wollan Center,Oak Ridge National Laboratory,田纳西州田纳西州37831,美国(日期为2021年5月18日)美国橡树岭国家实验室,田纳西州橡树岭37831,美国2计算科学与工程部,橡树岭国家实验室,田纳西州橡树岭,田纳西州37831,美国3个中子散射部 94115, USA 5 Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom 6 Institut Laue-Langevin, 38042 Grenoble Cedex 9, France 7 Faculty of Physics, Adam Mickiewicz University, 61-614 Pozna´n, Poland 8 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,美国9量子科学中心,橡树岭国家实验室,田纳西州37831,美国10 Shull-Wollan Center,Oak Ridge National Laboratory,田纳西州田纳西州37831,美国(日期为2021年5月18日)美国橡树岭国家实验室,田纳西州橡树岭37831,美国2计算科学与工程部,橡树岭国家实验室,田纳西州橡树岭,田纳西州37831,美国3个中子散射部 94115, USA 5 Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom 6 Institut Laue-Langevin, 38042 Grenoble Cedex 9, France 7 Faculty of Physics, Adam Mickiewicz University, 61-614 Pozna´n, Poland 8 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,美国9量子科学中心,橡树岭国家实验室,田纳西州37831,美国10 Shull-Wollan Center,Oak Ridge National Laboratory,田纳西州田纳西州37831,美国(日期为2021年5月18日)
2.9 值得注意的是,如果照明设施不是开发计划的组成部分,在许多商业/工业情况下,如果照明设施不会对建筑物或结构的外观产生重大影响,则可能不需要规划许可。2.10 在住宅物业上安装外部照明大体上属于许可开发,即免于正式规划控制,但有一个明显的例外,即《第 4 条指令令》生效,并根据《1992 年城镇和乡村规划(一般许可开发)(苏格兰)令》第 1 类限制许可开发。如果对安装照明方案是否需要规划许可有任何疑问,请务必向理事会的开发管理团队寻求建议。
摘要 我们研究了在超高真空低温扫描隧道显微镜 (STM) 中由飞秒激光激发 (亚) 纳米隧道结所驱动的光电流。尖端回缩曲线揭示了光驱动电荷转移,该曲线显示在极大的尖端-样品距离下有电流贡献,证明在较高能量下光激发电子的有效势垒高度大大降低。我们的测量表明,光诱导电子传输的幅度可以通过激光功率以及施加的偏置电压来控制。相反,光电流的衰减常数仅受这些参数的微弱影响。通过获取恒定电流地形图证明了具有光电子的稳定 STM 操作。通过使用一维势垒模型分析光电流,推导出多光子吸收导致的有效非平衡电子分布。
核磁共振可以说是实现简单量子计算实验的最佳量子技术,也是有史以来最差的构建大规模量子计算机的技术。经过几年的快速发展,最终在七自旋系统中实现了 Shor 的量子因式分解算法,该领域开始达到其自然极限,进一步发展变得具有挑战性。现在,人们的兴趣不再是在更大的系统上追求更复杂的算法,而是主要转向开发精确高效地操纵自旋状态的技术,目的是开发可应用于其他更具可扩展性的技术和传统 NMR 中的方法。然而,NMR 实现的用户友好性意味着它们仍然很受欢迎,可用于简单量子信息协议的原理验证演示。
组织工程对患病组织的再生和修复具有巨大的希望,使组织工程支架的发展成为对生物医学研究的极大兴趣的话题。由于它们的生物相容性和与天然细胞外基质的相似性,因此水凝胶已成为工程组织支架的主要候选者。然而,诸如孔隙率之类的水凝胶特性的精确控制仍然是一个挑战。传统技术在组织工程中表现出成功的水凝胶。但是,条件通常与直接细胞封装不相容。新兴技术已经证明了控制孔隙度和水凝胶中的微构造特征的能力,从而创建了具有与天然组织相似的结构和功能的工程组织。在这篇综述中,我们探索了控制水凝胶内孔隙度和微体系结构的各种技术,并证明了将这些技术结合的成功应用。
妇女家庭科学与高等教育研究所,印度泰米尔纳德邦哥印拜陀摘要:该系统通过利用眼睛追踪技术的力量来无缝控制家庭用具,从而彻底改变了瘫痪者的生活。利用OPENCV进行鲁棒和实时的眼动追踪,该系统通过专注于预定义的模式或命令,使患者能够轻松地与周围环境互动。用户友好的界面促进了眼动与各种家用设备(包括灯光,风扇和娱乐系统)之间建立连接。这种创新的解决方案赋予了机动性有限的个人重新获得独立性的能力,通过基于直觉的目光命令简化了日常工作和生活空间的管理。通过提供一种新颖的沟通和控制途径,该系统为瘫痪的患者提供了一种新的自主性,便利性和改善的生活质量。索引术语:瘫痪,眼睛跟踪技术,OPENCV,预定义的模式或命令,家用设备,基于目光的控制。
抽象的金属有机框架为几乎每个主要行业的含义都提供了高性能材料的构建材料的各种景观。具有这种多样性茎,具有各种途径和中间体的复杂结晶机制。结晶研究一直是无数生物学和合成系统发展的关键,而MOF也不例外。本综述概述了用于破译MOF结晶的当前理论和基本化学。然后,我们讨论如何将固有和外在合成参数用作调节结晶途径以使用精细调整的物理和化学特性生产MOF晶体的工具。提供了实验和计算方法,以指导分子和大量尺度上MOF晶体形成的探测。最后,我们总结了该领域的最新进展以及我们对MOF结晶的令人兴奋的未来的前景。
