光子集成电路(图片)最初是为满足光纤数据传输系统的需求而设计的[1]。近年来,我们目睹了光子整合技术的爆发,并具有不断增长的应用范围。高度活跃的字段包括光传感器[2],医疗应用[3],光学频率梳子生成[4]和量子技术[5]仅举几例。综合光子技术的持续进展是由大型生态系统的开发引起的,包括提供开放访问制造服务的铸造厂[6]。硅光子学基于高度成熟的CMOS制造过程,在此scenario中起着重要的作用[6]。尽管传统的绝缘体硅(SOI)技术仍然在CMOS平台中占主导地位,但基于氮化硅波导的图片对于某些应用来说尤其重要[7]。与硅引导结构相比,用氮化硅制造的结构可提供较小的线性和非线性固有传播损失,较低的热光系数以及一个较大的透明度区域,该区域为从可见的中部到中央验收的应用打开了平台。在负面,氮化硅的主要缺点源于其折射率小于硅的折射率。因此,氮化硅波导中的场限制较差,并且弯曲波导切片中的辐射损失变大[8]。这最终限制了集成设备中曲率的最小可接受半径,因此限制了集成规模。可以通过结合次波长的光栅[9]或侧凹槽[10,11]来修改波格的几何形状来减少弯曲整合波导中的辐射损失。尽管如此,这些设计策略需要其他非标准制造步骤。使用匹配的弯曲[12]允许通过将弯曲的总范围调整为前两种模式的节拍长度的倍数,从而减轻恒定曲率部分与直线输入和输出波导之间的过渡处的损失。可以应用于任意长度的弯曲部分的替代方法是通过将相对侧向移动应用于直的和弯曲的波导[13,14],以最大化不连续性的模式耦合。其他方案基于弯曲波导宽度[15-18]的进行性修改或使用三角学[19],Spline [10,20,21],Euler [22-25],Bezier [16,26]或N -djustable [27]功能。弯曲辐射损失也可以使用不同的算法最小化[28 - 34]。
地下流动问题对于许多科学和工程领域(例如地球物理学,环境科学,碳氢化合物提取和地热能量生产)来说都是有趣的。断层是地质结构,是流离失所的不连续性。在地下流量问题中,故障可以充当流体流动的导管或障碍,具体取决于断层的渗透性。这些断层结构可能会导致流体流动的显着变化,因此了解断层的相互作用(作为导管或屏障),而流体流对于应用很重要。在本文的其余部分中,我们将指向导管(通常称为裂缝)是导致断层和障碍物作为密封断层的。在[27]中提出了带有导电和密封故障的地下流的数学模型。他们进一步分析了此问题的混合有限元方法。在这项开创性的工作后,文献中出现了许多关于离散的地下流动流的作品。其中包括杂化高阶方法[11],内部惩罚不连续的盖尔金方法[25],连续不连续的盖尔金方法[31],一种杂交内部惩罚方法[23] [23],一种混合的虚拟元素方法[5],一种有限元方法[24],一种杂物元素方法[9]杂物[9]杂物[9],莫尔特(Mortar Arimation hybr A),效率分别效率[28],效率分别效应[28]。 29]和有限体积方法[12]。在昏暗维域上定义了多孔 - 矩阵流的darcy方程。但是,故障中的流体流量被建模为(dim-1)维域上的流量问题。在本文中,为了离散这个跨二维问题,我们提出了一种耦合的双重混合混合杂交不连续的Galerkin(HDG)方法和内部罚款不连续的Galerkin(IPDG)方法。HDG方法最初是在[14]中引入的,是一种减少传统不连续Galerkin方法的计算成本的方法。这是通过以促进静态凝结的方式引入新面部未知数来实现的。在网格的(dim-1)维定义的这些新面孔的引入,以及它们与网格昏暗细胞上未知的细胞耦合的耦合,但是,也为处理缺陷流动流动的多孔 - 矩形问题的二维问题提供了自然框架。使用双重矩阵流的昏暗维数darcy方程是使用双
引言乳腺癌是美国女性最常见的癌症,也是癌症死亡的第二常见原因。大约15%–20%的所有乳腺癌过表达ERBB2/HER2,因此被分类为HER2 +亚型,这与临床结果较差的攻击性癌症有关(1)。HER2是ERBB家族的成员,其中包括EGFR/ERBB1,ERBB2/HER2,ERBB3和ERBB4 - 所有跨膜受体酪氨酸激酶(参考文献2,3)。erbb2/her2没有已知的配体,但可以与EGFR或HER3(4)均匀地二聚二聚体或异二聚体。二聚体HER2激活了一个复杂的下游信号级联,主要由PI3K/AKT和MAPK途径组成(4)。HER2过度激活诱导乳腺肿瘤的形成,进展和转移。 HER2 +乳腺癌最成功的治疗方法是Her2靶向治疗(5)。 几种FDA-批准的抗HER2药物,包括人源化的单克隆抗体,曲妥珠单抗和HER2和EGFR的小分子双抑制剂,Lapatinib,显着改善了HER2 +乳腺癌患者的临床结果。 然而,最初对HER2靶向疗法反应的肿瘤最终会产生抗药性(5)。 为了改善晚期HER2 +乳腺癌的临床结果,开发新型治疗方法以提高HER2靶向治疗的功效至关重要。 GPCR是最大的细胞表面受体家族。它们由800多个调节大量生物学功能的成员组成(6)。 GPCR功能障碍推动了包括乳腺癌在内的许多肿瘤的发育和进展(7)。HER2过度激活诱导乳腺肿瘤的形成,进展和转移。HER2 +乳腺癌最成功的治疗方法是Her2靶向治疗(5)。几种FDA-批准的抗HER2药物,包括人源化的单克隆抗体,曲妥珠单抗和HER2和EGFR的小分子双抑制剂,Lapatinib,显着改善了HER2 +乳腺癌患者的临床结果。然而,最初对HER2靶向疗法反应的肿瘤最终会产生抗药性(5)。为了改善晚期HER2 +乳腺癌的临床结果,开发新型治疗方法以提高HER2靶向治疗的功效至关重要。GPCR是最大的细胞表面受体家族。它们由800多个调节大量生物学功能的成员组成(6)。GPCR功能障碍推动了包括乳腺癌在内的许多肿瘤的发育和进展(7)。转录组分析表明,乳腺癌细胞异常表达多个GPCR(8)。在多种乳腺癌分子亚型中,蛋白质组学分析鉴定了异常的GPCR激活(9)。
非线性PAH及其独特的化学结构与PAH的致癌性密切相关。5的PHE衍生物是具有显着性致癌性的PAH,PHE已成为PAHS研究中的代表化合物。6土壤作为一种重要介质,负责超过90%的PHE环境负荷,这很难降低土壤,并且随着时间的积累,其毒性变得越来越强大。7 - 9土壤中PHE造成的污染不仅会阻碍其正常功能,还会导致农作物的产量降低和农业产品安全问题,最终将通过食物链对人体造成极大的严重伤害。10 - 12世界卫生组织的国际癌症研究所宣布了一类致癌物,已证明其在人体中的存在会导致单调细胞的损害,从而通过高浓度的自由基浓度,甚至会损害损害。13 - 15鉴于PHE造成的人类健康和土壤环境的巨大威胁,研究对土壤生态系统污染的PHE污染的监测非常重要。13 - 15鉴于PHE造成的人类健康和土壤环境的巨大威胁,研究对土壤生态系统污染的PHE污染的监测非常重要。
摘要,对表面变暖的顶部大气(TOA)辐射反应的现实表示是信任气候模型预测的关键。我们表明,具有自由发展的海洋大气相互作用的耦合模型系统地低估了552个模拟中观察到的全球TOA辐射趋势。在局部,即使模拟自发地重现了观察到的表面温度趋势,TOA辐射趋势的可能性要低于高估。这种反应偏见源于模型无法再现观察到的大规模表面变暖模式以及影响短波辐射的大气物理学的误差。模型更好地表示TOA辐射对局部表面变暖的响应具有相对较低的气候灵敏度。我们的偏见度量是一种基于过程的新方法,它将模型的当前反应与气候变化与未来的行为联系起来。
电负性电感耦合等离子体 (ICP) 用于微电子工业中半导体制造的导体蚀刻。天线功率和偏置电压的脉冲化提供了额外的控制,以优化等离子体 - 表面相互作用。然而,由于在前一次余辉结束时电子密度较低,因此脉冲 ICP 在功率脉冲开始时易受电容到电感模式转变的影响。电容 (E) 到电感 (H) 模式的转变对前一次余辉结束时等离子体的空间结构、电路(火柴盒)设置、操作条件和反应器配置(包括天线几何形状)很敏感。在本文中,我们讨论了通过计算研究的结果,研究了在 Ar/Cl 2 和 Ar/O 2 气体混合物中维持的脉冲 ICP 中的 E - H 跃迁,同时改变操作条件,包括气体混合物、脉冲重复频率、功率脉冲的占空比和天线几何形状。在 Ar/Cl 2 混合气体中维持的脉冲 ICP 容易发生显著的 E – H 跃迁,这是因为余辉期间与 Cl 2 发生热解离附着反应,从而降低了预脉冲电子密度。这些突然的 E – H 跃迁会从等离子体边界(尤其是天线下方)形成的鞘层发射静电波。在 Ar/O 2 混合气体中观察到的更平滑的 E – H 跃迁是由于缺乏对 O 2 的热电子附着反应,导致功率脉冲开始时的电子密度更高。讨论了入射到晶片和天线下方的介电窗口上的离子能量和角度分布 (IEAD)。天线的形状影响 E – H 跃迁和 IEAD 的严重程度,天线具有面向等离子体的较大表面积,会产生较大的电容耦合。通过将计算出的电子密度与实验测量值进行比较来验证模型。
摘要:风光互补发电制氢是解决风电和太阳能发电随机性强、波动性大的重要手段。本文将永磁直驱风力发电机组、光伏发电单元、电池组、电解槽组装在交流母线内,建立了风光储氢耦合发电系统数学模型及PSCAD/EMTDC中的仿真模型,设计了能量协调控制策略。经过仿真,提出的控制策略能有效降低风电和太阳能发电的弃风率,平抑风电和太阳能发电的波动,验证了建立的模型的正确性和控制策略的有效性和可行性。
虽然在本研究中我们模拟了经典计算机中的量子计算,但我们应该注意到量子力学测量是随机的,因此,每次评估期望值时我们都将进行1000次测量。对于每种相互作用强度,进行50次基态能量估计,并得到它们的中位数和百分位数。另外,在本研究中,我们采用了Nakanishi等人[31]提出的序贯最小优化(SMO)方法进行参数优化。SMO方法具有以下优点:收敛速度更快、对统计误差具有鲁棒性、无需超参数优化。SMO方法基于这样一个事实,即期望值表示为具有一定周期的三角函数的简单和。更多详细信息可参见参考文献[31]。
免责声明本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构的观点或加利福尼亚大学的摄政。