Le Cong, 1,2 * F. Ann Ran, 1,4 * David Cox, 1,3 Shuailiang Lin, 1,5 Robert Barretto, 6 Naomi Habib, 1 Patrick D. Hsu, 1,4 Xuebing Wu, 7 Wenyan Jiang, 8 Luciano Marraffini, 8 Feng Zhang 1 †
全球粮食安全面临严峻挑战,因为预计到 21 世纪中叶世界人口将增长 25%,达到 100 亿 [1]。由于农业用地和淡水有限,需要利用现代农业技术实现更多、更可持续的农作物生产 [2,3]。其中包括开发和利用雄性不育系进行杂交育种和种子生产的更有效的杂种优势利用策略。植物雄性不育是指雌性器官保持正常,而不能形成或释放可育花粉粒。雄性不育突变体含有形态改变的孢子体或配子体花药组织。这些可能是由于植物花药和花粉发育过程中的转录调控、脂质代谢、糖代谢或其他过程存在缺陷所致 [4–6]。雄性不育基因的鉴定和功能分析不仅加深了我们对花药和花粉发育分子机制的认识,而且有利于开发和利用基于生物技术的雄性不育(BMS)系统,用于杂交育种和种子生产[5]。雄性不育可以由细胞质基因或核基因产生。细胞质雄性不育(CMS)由线粒体和核基因控制,在由雄性不育系、保持系和恢复系组成的三系系统中用于商业作物杂交种子生产,尽管它通常存在遗传多样性差、易患疾病以及CMS系恢复不稳定的问题[5]。核控制雄性不育仅由核基因控制,包括遗传稳定的核雄性不育(GMS)和环境敏感的核雄性不育(EGMS)。 EGMS 长期以来一直用于高效生产杂交水稻种子,其双系系统由雄性不育系和保持系组成,而 GMS 只是最近才用于 BMS 系统,例如玉米的种子生产技术 (SPT) 和多控制不育 (MCS) 系统 [7,8]。如上所述,全球粮食安全需要新的有效农业技术(如 BMS 系统)来增加农作物产量。
上下文或问题:未来的气候场景对可持续棉花生产提出了重大挑战。制定有效的适应策略对于减轻这些威胁至关重要。客观或研究问题:本研究评估了气候变化对不同耕作系统和氮施用率下棉质棉布产量的影响,以识别潜在的适应策略。方法:在田纳西州的杰克逊(Jackson)进行了长期的棉花场实验(39年),其中有两个耕作系统(无耕种和常规耕作)和四个氮(N)施用速率(0、33、67和101 kg ha⁻⁻)。使用两种代表性浓度途径(RCP4.5和RCP8.5)和五个全球循环模型(GCMS),用于模拟2025年至2057年的棉质棉绒产量,涵盖接近任期(2025 - 2035),中期(2036 - 2046),以及2077.207-207-207-207-207-207-207-207-207-207-结果:在所有情况下,在两个耕作系统下,氮的施用率都会增加对棉质棉绒产量产生积极影响。然而,无耕作始终超过常规耕作,特别是在RCP8.5下,表明其在不断变化的气候中的潜在益处。模型预测表明,虽然观察到初始收益率,但随着气候影响加剧,这些预期可能会随着时间而减少。在RCP4.5下,近期产量增加,但在中期和遥远的期间显示趋势下降。在RCP8.5下,尽管最初的韧性,所有模型都预测,中期和远程的产量显着下降,MRI-CGCM3模型中最明显的降低。结论:这项研究强调了自适应策略的重要性,例如无耕种在减轻气候对棉花产量的负面影响中的重要性。的含义或意义:实施无耕种实践与优化的氮管理相结合可以在未来的气候情况下提高棉花生产力,尤其是在RCP8.5
全球粮食安全问题对联合国的可持续发展目标影响巨大,该目标主要致力于到 2030 年消除饥饿。2019 年全球粮食安全指数报告称,88% 的国家声称其国家粮食供应充足,但可怕的现实是,根据该指数,三分之一的国家都面临粮食供应不足的问题,这意味着超过 10% 的人口营养不良。由于营养是维持健康生活方式和满足粮食安全要求的主要因素之一,各国开展的多项国家营养调查为政府评估全民营养不良问题提供了途径。例如,巴基斯坦 2011 年开展的国家营养调查表明,根据现有食物的营养状况,超过 50% 的人口粮食不安全。这项调查还强调,饮食中微量营养素严重缺乏,导致多种疾病,尤其是在女性人群中。鉴于这些事实,全球正在努力通过多种生物技术方法来提高我们的农产品,特别是主要作物的营养价值。