摘要 众包具有巨大的潜力:例如,宏观任务众包可以为应对气候变化的工作做出贡献。宏观任务众包旨在利用群体智慧解决棘手问题等非平凡任务。然而,宏观任务众包需要大量劳动力,而且执行起来很复杂,这限制了它的效率、效果和用途。人工智能 (AI) 的技术进步可能会通过支持促进众包来克服这些限制。然而,要实现这一点,需要更好地理解 AI 在宏观任务众包促进方面的潜力。在这里,我们求助于舞蹈理论来发展这种理解。在宏观任务众包中,可供性帮助我们描述表征促进者和 AI 之间关系的行动可能性。我们遵循两阶段、自下而上的方法:初始开发阶段基于对学术文献的结构化分析。随后的验证和改进阶段包括两个观察到的宏观任务众包计划和六次专家访谈。从我们的分析中,我们得出了支持宏观任务众包中的 17 项促进活动的七种人工智能可供性。我们还确定了说明可供性的具体表现形式。我们的研究结果增加了学术界对宏观任务众包的理解,并推动了关于促进的讨论。此外,它们还帮助从业者确定将人工智能融入众包促进的潜在方法。这些结果可以提高促进活动的效率和宏观任务众包的有效性。
1 我们不使用 Berger 和 Packard 的基于潜在狄利克雷分析 (LDA) 的方法,因为它提取了最流行 (常见) 的主题 (维度),例如词束。LDA 方法在新产品创意的背景下可能会出现问题,因为 LDA 可能会将新颖和独特的词归类为“错误”。成功的新产品创意往往是新颖或独特的 (Dahl and Moreau 2002;Toubia 2006)。在众包创意竞赛中,在创意级别而不是主题级别捕捉非典型性的指标可能更胜一筹,因为它不会筛选出这些新颖或独特的创意。
芬兰奥卢 simo.hosio@oulu.fi 摘要 众包工作者默默地推动了当今许多基于人工智能的产品的发展,一些在线平台通过便捷的劳动力市场提供大量数据标记和内容审核任务。HCI 社区越来越有兴趣研究当前模型中固有的以工人为中心的问题,并寻求未来可以实施的潜在改进。本次研讨会探讨了如何从重新构想的众包平台视角提供更公平、公正和有益的体验。这不仅包括工人,还包括平台,他们可以从更好的工人入职、技能开发和成长流程中受益。我们邀请有远见的人以各种形式就此主题发表看法,以向 CHI 社区传播以工人为中心的研究和发展的意识。通过研讨会上的互动构思工作,我们明确了以众包平台为中心的研究未来方向路线图。最后,作为一个特定的兴趣领域,研讨会旨在研究
众包工作者默默地推动了当今许多基于人工智能的产品的发展,一些在线平台通过便捷的劳动力市场提供大量数据标记和内容审核任务。HCI 社区越来越有兴趣研究当前模型中固有的以工人为中心的问题,并寻求未来可以实施的潜在改进。本次研讨会探讨了如何从重新构想的众包平台视角提供更公平、公正和有益的体验。这不仅包括工人,还包括平台,他们可以从更好的工人入职、技能开发和成长流程中受益。我们邀请有远见的人以各种形式就这一主题发表看法,以向 CHI 社区传播以工人为中心的研究和发展的意识。作为研讨会上互动构思工作的结果,我们阐明了以众包平台为中心的研究的未来方向路线图。最后,作为一个特定的兴趣领域,研讨会试图从全球南方国家的背景下研究众包工作,近年来,众包工作已成为一个重要但研究不足的众包市场。
本文旨在研究人工智能时代新闻众筹中数据隐私保护问题。本文分别引用人工智能数据保护的加密算法和BP神经网络预测模型来分析人工智能时代新闻众筹中数据隐私保护问题。最后本文还结合问卷调查的方法,了解公众的隐私意识。本文的研究结果表明,人工智能可以促进个人数据意识与隐私保护,完善个人数据与隐私保护措施与方法,提高隐私与隐私保护的有效性和水平。在分析中,调查发现,男大学生对个人特质信息的认知仅为81.1%,对网络踪迹信息的认知仅为78.5%,女大学生对个人信用的认知仅为78.3%。
本文旨在研究人工智能时代新闻众筹中的数据隐私保护问题。本文分别引用人工智能数据保护的加密算法和BP神经网络预测模型对人工智能时代新闻众筹中的数据隐私保护问题进行分析。最后本文还结合问卷调查法了解公众的隐私意识。本文研究结果表明,人工智能可以促进个人数据与隐私意识的提升,完善个人数据与隐私保护的措施与方法,提高隐私与隐私保护的有效性与水平。在分析中,调查发现,男大学生对个人特质信息的认知仅为81.1%,对网络踪迹信息的认知仅为78.5%,女大学生对个人信用的认知仅为78.3%。
PART 2 Planning and Preparation ........................................................................................5 2.1 Standardized Emergency Management System (SEMS) and Incident Command System (ICS) ................................................................................................5 2.2 Incident/Event Planning ................................................................................................................8 2.3 Crowd Behavior ..............................................................................................................................13 2.4 Mutual Aid & Multi-Agency Coordination ............................................................................16 2.5 Public Agency and Community-Based Resources .............................................................18 2.6 Training for Managing Crowds ......................................................................................................................................................................................... 19
本文探讨了向由人工智能和人类工作者组成的群体动态分配任务的问题。目前,众包创建人工智能程序是一种常见的做法。为了将这类人工智能程序应用于一组任务,我们通常采取“全有或全无”的方法,等待人工智能足够好。然而,这种方法可能会阻止我们在过程完成之前利用人工智能提供的答案,也会阻止探索不同的人工智能候选者。因此,将创建的人工智能与其他人工智能和人工计算相结合,以获得更高效的人机团队并非易事。在本文中,我们提出了一种解决这些问题的方法,即采用“分而治之”的策略来评估人工智能工作者。在这里,只要最终结果满足给定的质量要求,分配给人类的任务数量最少,分配就是最优的。本文对所提出的方法进行了理论分析,并利用开放基准和真实数据集进行了大量的实验。结果表明,当人工智能难以满足整个任务集的质量要求时,该算法可以向人工智能分配比基线多得多的任务。它们还表明,它可以根据现有人工智能工作者的表现灵活地改变分配给多个人工智能工作者的任务数量。
摘要:在城市或移动方案中对空气质量的普遍评估对于个人或全市范围的减少曝光行动设计和实施至关重要。部署监管等级和低成本固定和移动设备的高分辨率混合网络是开发此类知识的主要推动力,既可以作为主要信息来源,又是验证高分辨率空气质量预测模型。实时和个人暴露监测的能力也被认为是开拓体监测和未来预测医学方法的主要驱动力。利用化学感测,机器学习和物联网(IoT)专业知识的专业知识,我们开发了一种综合体系结构,能够满足这个具有挑战性的问题的要求。此处报告了有关设计,开发和验证程序的详细说明,以及两年验证工作的结果。
人们普遍认为,我们对人工智能缺乏互惠互利反映出缺乏信任。毕竟,人工智能是超理性和无情的,肯定只顾自己,不太可能合作,所以我们为什么要合作呢?德罗伊博士和她的同事得出了一个不同的、也许不那么令人欣慰的结论。他们的研究发现,即使机器人热衷于合作,人们也不太可能与机器人合作。这并不是说我们不信任机器人,而是我们信任机器人:机器人肯定是仁慈的,是个大写的傻瓜,所以我们利用了它。