过去十年,系统和认知神经科学的研究呈指数级增长。系统神经科学专注于神经回路和系统的结构和功能,而认知神经科学则以认知背后的生物过程为中心。这两个学科使用的方法经常重叠(即行为测量)。这两个子学科使用的样本量通常由于所选方法涉及的时间、成本和侵入性以及目标人群的可用性而不足。例如,心理学研究的样本量中位数在 40 到 120 之间变化(Marszalek 等人 2011)。虽然这些数字可能足以检验一些假设,但它们通常动力不足(Button 等人 2013;开放科学合作 2015)。
在过去十年中,“微出行”一词已灵活地涵盖各种小型联网车辆,用于短距离运送人员和货物。电动滑板车和自动送货机器人等服务被誉为解决汽车拥堵和公共交通不足的双重问题的答案,它们迅速发展成为城市计划的焦点,促进了美国各城市的经济发展、可持续发展和交通。例如,匹兹堡市长比尔·佩杜托(Bill Peduto)简要总结了政府参与共享微出行等创新计划的吸引力。“你可以设置繁文缛节,也可以铺开红地毯。如果你想成为 21 世纪的技术实验室,你就铺上红地毯” [53]。佩杜托市长和许多其他政府代表都认为监管可能会扼杀商业进步,他们热情地将自己的城市作为试验台,以获得对支持发展所谓的新型智慧城市的认可 [29,56]。
当我们在社交行为中感到联系或参与时,我们的大脑是否真的在正式、可量化的意义上“同步”?大多数研究都使用高度控制的任务和同质的受试者池来解决这个问题。为了采取更自然的方法,我们与艺术机构合作,众包神经科学数据:在 5 年的时间里,我们从数千名博物馆和节日游客那里收集了脑电图 (EEG) 数据,他们自愿参与 10 分钟的面对面互动。熟悉程度不同的两对参与者坐在互波机内——这是一种艺术神经反馈装置,可将每对 EEG 活动的实时相关性转化为光图案。由于此类参与者之间的 EEG 相关性容易受到噪声污染,在随后的离线分析中,我们使用虚部相干性和投射功率相关性计算了大脑间耦合,这两个同步指标在很大程度上不受瞬时噪声驱动相关性的影响。当将这些方法应用于具有最一致协议的两个记录数据子集时,我们发现配对的特质同理心、社交亲密度、参与度和社交行为(联合行动和眼神接触)一致地预测了他们的大脑活动同步的程度,最显著的是低 alpha(~7-10 Hz)和 beta(~20-22 Hz)振荡。这些发现支持这样一种观点,即在动态、自然的社交互动过程中,共同参与和联合行动会驱动耦合的神经活动和行为。据我们所知,这项工作首次证明了跨学科、现实世界、众包神经科学方法可能提供一种有前途的方法来收集与现实生活中面对面互动有关的大量丰富数据集。此外,它还展示了普通公众如何参与和参与实验室外的科学过程。博物馆、美术馆等机构或公众出于自我激励而积极参与的任何其他组织都可以帮助促进此类公民科学研究,并支持在科学控制的实验条件下收集大量数据集。为了进一步提高公众对实验室外实验方法的兴趣,本研究的数据和结果通过一个专门为公众量身定制的网站传播(wp.nyu.edu/mutualwavemachine)。
摘要 随着移动众包感知的出现,我们现在可以利用公民每天携带的智能手机的感知功能来收集有关城市和事件的信息和情报。寻找能够在所需数据类型方面满足感知任务的最佳众包感知参与者组,同时满足质量、时间和预算限制是一个复杂的问题。事实上,众包感知任务的时间限制和基于位置的性质,再加上参与者的流动性,使得参与者的选择任务成为一项艰巨的任务。在本文中,我们提出了一个全面实用的移动众包感知招募模型,该模型提供可靠性和基于质量的方法来选择最可靠的参与者组,能够为所需的传感数据提供尽可能最好的质量。在我们的模型中,我们采用基于群组的选择方法,其中一组参与者(聚集到站点)使用他们智能手机的综合功能协作完成感知任务。我们的模型是使用 MATLAB 实现的,并使用实际输入进行配置,例如基准传感器的质量得分、不同国家/地区使用最广泛的手机品牌以及与各种事件相关的传感数据类型。进行了广泛的测试,以研究各种参数对参与者选择的影响,并了解在实际 MCS 环境中部署此类过程时所涉及的妥协。获得的结果非常有希望,并为影响移动众包感知参与者选择过程的质量和可靠性的不同方面提供了重要的见解。
准确地描绘路面上的坑洼不仅有助于消除安全相关顾虑并提高驾驶员的通勤效率,还可以减少交通机构不必要的维护成本。在本文中,我们提出了一种基于智能手机的系统,该系统能够精确估计坑洼的长度和深度,并介绍了坑洼数据收集、轮廓聚合以及坑洼警告和报告的整体设计。所提出的系统依靠车载智能手机的内置惯性传感器来估计坑洼轮廓,并警告驾驶员即将出现的坑洼。由于驾驶行为和车辆悬架系统的差异,构建此类系统的一个主要挑战是如何聚合来自多辆参与车辆的相互冲突的传感器报告。为了应对这一挑战,我们提出了一种新颖的可靠性感知数据聚合算法,称为可靠性自适应真相发现(RATD)。它推断每个数据源的可靠性并以无监督的方式聚合坑洼轮廓。我们的现场测试表明,所提出的系统可以有效地估计坑洼轮廓,并且与流行的数据聚合方法相比,RATD 算法显著提高了轮廓绘制的准确性。
准确地描绘路面上的坑洼不仅有助于消除安全相关顾虑并提高驾驶员的通勤效率,还可以减少交通机构不必要的维护成本。在本文中,我们提出了一种基于智能手机的系统,该系统能够精确估计坑洼的长度和深度,并介绍了坑洼数据收集、轮廓聚合以及坑洼警告和报告的整体设计。所提出的系统依靠车载智能手机的内置惯性传感器来估计坑洼轮廓,并警告驾驶员即将出现的坑洼。由于驾驶行为和车辆悬架系统的差异,构建此类系统的一个主要挑战是如何聚合来自多辆参与车辆的相互冲突的传感器报告。为了应对这一挑战,我们提出了一种新颖的可靠性感知数据聚合算法,称为可靠性自适应真相发现(RATD)。它推断每个数据源的可靠性并以无监督的方式聚合坑洼轮廓。我们的现场测试表明,所提出的系统可以有效地估计坑洼轮廓,并且与流行的数据聚合方法相比,RATD 算法显著提高了轮廓精度。
在当前的数字时代,在许多地方人群计数机制仍然依赖于老式的方法,例如维护登记册,利用人们在入口处进行基于柜台和传感器的计数。这些方法在人们的运动是完全随机的,高度可变和动态的地方失败。这些方法是耗时且乏味的。拟议的系统是针对需要紧急撤离的情况,例如火灾爆发,灾难性事件等。并根据食物,水,检测拥塞等人数做出明智的决定。基于深度卷积神经网络(DCNN)系统可用于接近实时人群计数。系统使用NVIDIA GPU处理器利用并行计算框架来实现通过相机采用的视频提要的快速而敏捷的处理。这项工作有助于构建一个模型来检测CCTV摄像机捕获的头部。通过提供多种场景,例如重叠的头部,头部的部分可见性等,对模型进行了广泛的训练。该系统在估计密集人群的头部数量相当小的时间内提供了很高的准确性。
基于众包的 Web 频谱监测系统最近越来越受欢迎。然而,这些系统仅限于政府组织或电信提供商感兴趣的应用,并且仅提供有关频谱统计的汇总信息。结果是普通用户缺乏参与的兴趣,这限制了其广泛部署。我们提出了 Electrosense+,它解决了这一挑战,并使用低成本、嵌入式和软件定义的频谱物联网传感器创建了一个通用的开放频谱监测平台。Electrosense+ 允许用户远程解码无线电频谱的特定部分。它建立在其前身 Electrosense 的集中式架构之上,用于控制和监控频谱物联网传感器,但实现了实时和点对点通信系统,用于可扩展的频谱数据解码。我们提出了不同的机制来激励用户参与部署新传感器并使其在 Electrosense 网络中运行。作为对用户的奖励,我们提出了一种基于虚拟代币的激励会计系统,以鼓励参与者托管物联网传感器。我们介绍了新的 Electrosense+ 系统架构,并评估了其解码各种无线信号(包括 FM 无线电、AM 无线电、ADS-B、AIS、LTE 和 ACARS)的性能。
参与无处不在 21 世纪的技术创新催生出一种主要趋势:参与。社交媒体和实时通信技术为来自世界各地的不同人群的广泛互动奠定了基础。消费者不仅消费,还积极地共同交流、评论和共同开发。公民不再等待政府来塑造他们的环境,而是开始自己的请愿和倡议。组织已开始利用这一趋势,通过利用群体的力量来获取优势。虽然创新竞赛或联合品牌传播已变得流行,但将群体纳入战略过程的情况并不常见。开放战略的例子表明,公司已开始应用各种实践来吸引广泛的参与者。最近的一些实施包括博客、维基、jam、创意竞赛以及社区平台或预测市场。这种众多实践反映了包容性的潜在方法范围。
寻找社交影响者是许多在线应用(从品牌营销到意见挖掘)的一项基本任务。现有方法严重依赖专家标签的可用性,而专家标签的收集通常是一个费力的过程,即使对于领域专家也是如此。使用开放式问题,众包提供了一种经济有效的方式,可以在短时间内找到大量社交影响者。然而,个体众包工作者只拥有碎片化的知识,而且这些知识通常质量较低。为了解决这些问题,我们提出了 OpenCrowd,这是一个统一的贝叶斯框架,它无缝地结合了机器学习和众包,可以有效地找到社交影响者。为了推断一组影响者,OpenCrowd 使用少量专家标签引导学习过程,然后联合学习基于特征的答案质量模型和工作者的可靠性。模型参数和工作者可靠性会迭代更新,从而使他们的学习过程相互受益,直到就答案的质量达成一致。我们基于变分推理推导出一种原则性优化算法,该算法具有用于学习 OpenCrowd 参数的有效更新规则。在不同领域寻找社交影响者的实验结果表明,我们的方法将 AUC 提高了 11.5%,比现有技术水平有了显著提高。此外,我们通过经验表明,我们的方法在寻找与较小受众直接互动的微影响者方面特别有用。