我们还推出了sphinx数据包格式增强版本的“ Kem 3 Sphinx”,旨在通过增加数据包标头大小的修改来提高性能。与其前身不同,Kem Sphinx解决了原始设计固有的性能限制,提供了使处理速度加倍的解决方案。我们的分析扩展到在量子后加密环境中Kem Sphinx的适应,显示出最小的性能降解的过渡。该研究得出的结论是,在增加规模和提高速度和安全性之间的权衡是合理的,尤其是在要求更高安全性的情况下。这些发现表明,Kem Sphinx是在越来越多的量词后加密景观中使用高效,安全通信方案的有希望的方向。
第1章对它们的ciphers和攻击1 1.1密码学的重要性2 1.2对称加密2 1.2.1 AES 4 1.2.2对称算法对蛮力攻击的现状4 1.3非对称加密5 1.3非对称加密5 1.4混合程序7 1.5 kerckhoffs'1.6原理7 1.6关键空间:3 1.6关键空间:A A A A I疗法:A A A A A A a a anor action。密封器设备8 1.6.2应使用哪些关键空间假设11 1.6.3历史性密码设备的关键空间结束13 1.7对给定密码的最著名攻击14 1.7.1针对古典CIPHERS 15 1.7.2最著名的攻击1.7.2 1.7.2对现代CIPHERS 15 1.8 1.8攻击类型和安全性定义的攻击定义16 1.8.8.1 16 1.8 Security Definitions 21 1.9 Algorithm Types and Self-Made Ciphers 24 1.9.1 Types of Algorithms 24 1.9.2 New Algorithms 24 1.10 Further References and Recommended Resources 24 1.11 AES Visualizations/Implementations 25 1.11.1 AES Animation in CTO 26 1.11.2 AES in CT2 26 1.11.3 AES with OpenSSL at the Command Line of the Operating System 28 1.11.4 AES with OpenSSL within CTO 29 1.12使用SageMath的对称密码的教育示例29
摘要。主动故障注入是对敏感数据计算现实世界数字系统计算的可靠威胁。在存在故障的情况下争论安全性是不平凡的,最新的标准过于保守,缺乏细粒度比较的能力。但是,需要将两个替代实现的安全性进行比较,以找到安全性和绩效之间的令人满意的妥协。此外,替代故障场景的比较可以帮助优化实施有效的对策。在这项工作中,我们使用定量信息流量分析来建立一个在故障注入下的硬件电路的漏洞指标,该指标在信息泄漏方面衡量攻击的严重程度。pieptiment用例范围从将其脆弱性与特定故障场景的实现进行比较到优化反向调查。我们通过将其集成到用于物理攻击的最先进的评估工具中来自动化指标的计算,并在主动故障攻击者下对安全性提供新的见解。
承诺量子态意味着什么?在这项工作中,我们提出了一个简单的答案:如果在承诺阶段之后,承诺状态从发送者的角度来看是隐藏的,则对量子消息的承诺具有约束力。我们用几个实例来说明这个新定义。我们构建了第一个非交互式简洁量子态承诺,它可以看作是量子消息的抗碰撞散列的类似物。我们还表明,任何经典消息的承诺方案都隐含着隐藏量子态承诺 (QSC)。我们所有的构造都可以基于量子密码假设,这些假设隐含在单向函数中,但可能比单向函数更弱。对量子态的承诺为许多新的加密可能性打开了大门。简洁 QSC 的旗舰应用是 Kilian 简洁论证的量子通信版本,适用于任何具有具有恒定误差和多对数局部性的量子 PCP 的语言。代入 PCP 定理,这可以在比传统要求弱得多的假设下为 NP 提供简洁的论证;此外,如果量子 PCP 猜想成立,这将扩展到 QMA。我们安全性证明的核心是一种用于提取量子信息的新型倒带技术。
摘要。本文在叠加访问模型中形式化了明文感知概念,在该模型中,量子对手可以在量子设备中实现加密预言机并对解密预言机进行叠加查询。由于对手可以通过各种可能的方式访问解密预言机,我们提出了六种安全定义来捕捉每种访问方式的明文感知概念。我们研究了这些定义之间的关系,并提出了各种蕴涵和非蕴涵。经典地,最强的明文感知概念 (PA2) 伴随着选择明文攻击下的不可区分性 (IND-CPA) 概念,产生了选择密文攻击下的不可区分性 (IND-CCA) 概念。我们表明,当针对 IND-qCCA 概念(Boneh-Zhandry 定义,Crypto 2013)时,PA2 概念不足以显示上述关系。然而,我们提出的具有叠加解密查询的后量子 PA2 概念实现了这一含义。关键词。明文感知,后量子安全,公钥加密
摘要 — 集成电路容易遭受多种攻击,包括信息泄露、旁道攻击、故障注入、恶意更改、逆向工程和盗版。大多数此类攻击都利用了单元和互连的物理布局和布线。已经提出了几种措施来处理高级功能设计和逻辑综合的安全问题。但是,为了确保端到端的可信 IC 设计流程,必须在物理设计流程中进行安全签核。本文提出了一种安全的物理设计路线图,以实现端到端的可信 IC 设计流程。本文还讨论了利用 AI/ML 在布局级别建立安全性。本文还讨论了获得安全物理设计的主要研究挑战。
摘要。最近的作品表明,量子周期可以用于打破许多流行的构造(某些块密码,例如偶数,多个Mac和AES。。。 )在叠加查询模型中。到目前为止,所有破碎的结构都表现出强大的代数结构,使得能够定期发挥单个输入块的定期功能。恢复秘密时期允许恢复钥匙,区分,打破这些模式的确定性或真实性。在本文中,我们介绍了量子线性化攻击,这是一种使用Simon的算法来定位叠加查询模型中MAC的新方法。特别是,我们使用多个块的输入作为隐藏线性结构的函数的接口。恢复此结构允许执行伪造。我们还提出了使用其他量子算法的这种攻击的一些变体,这些算法在量子对称地crypt-分析中不太常见:Deutsch's,Bernstein-Vazirani和Shor's。据我们所知,这是这些算法第一次用于伪造或钥匙恢复攻击中。我们的攻击破坏了许多可行的MAC,例如LightMac,PMAC和许多具有(经典的)超越生物结合安全性(Lightmac+,PMAC+)或使用可调整的块密码(ZMAC)的变体。更普遍地,它表明,构建可行的量子安全性PRF可能是一项具有挑战性的任务。
摘要。本文研究了如何将小信息泄漏(称为“提示”)纳入信息集解码(ISD)算法。特别是,分析了这些提示对求解(N,K,T)的影响 - 综合征 - 解码问题(SDP),即对长度为n,尺寸K和重量t误差的通用综合征解码。我们通过在基于代码后的量子后加密系统上通过现实的侧向通道来获得所有提示。一类研究的提示包括对错误或消息的部分知识,这些知识允许使用问题的适当转移来减少长度,维度或错误权重。作为第二类提示,我们假设已知误差的锤子权重,可以通过模板攻击来激励。我们提供了此类泄漏的改编的ISD算法。对于每个基于第三轮代码的NIST提交(Classic McEliece,Bike,HQC),我们显示每种类型需要多少个提示来将工作因素降低到要求的安全水平以下。,例如,对于经典的McEliece McEliece348864,对于175个已知消息条目,9个已知错误位置,650个已知的无错误位置或已知的锤击权重的29个子块的尺寸约为大小相等。
不经意传输 (OT) [Rab05] 是一种基本的密码原语,它允许接收方获取发送方持有的两个输入中的一个,而接收方对另一个输入一无所知,发送方则一无所知(特别是接收方收到的输入)。后来 [Cr´e87] 表明,二分之一 OT 等同于更一般的 n 分之一 OT 的情况,其中发送方持有 n 个输入,接收方接收其中一个。Goldreich、Micali 和 Wigderson [GMW87] 的成果说明了不经意传输的重要性,他们证明 OT 是 MPC 完全的,这意味着它可以用作构建块,无需任何额外的原语即可安全地评估任何多项式时间可计算函数。因此,研究这个原语的安全性变得至关重要,尤其是考虑到
自从量子计算和现代密码学诞生以来,几十年来一直保持着高效的合作关系。一方面,得益于 Shor 算法 [Sho94],(大规模) 量子计算机可用于破解许多广泛使用的基于因式分解和离散对数难度的密码系统。另一方面,量子信息和计算帮助我们实现了原本不可能实现的加密任务,例如量子货币 [Wie83] 和生成可证明的随机性 [Col09、VV12、BCM+18]。量子密码学中的另一颗明珠是 Bennett 和 Brassard [BB84] 发现了一种无条件安全的密钥交换协议。也就是说,他们为传统上必须依赖于未经证实的计算假设的加密任务实现了信息论安全性。简而言之,他们利用量子态的不可克隆性(量子力学的基本原理)实现了这一点。更引人注目的是,他们的协议对量子资源的使用率极低,因此已在实践中应用于非常远的距离 [ DYD + 08 , LCH + 18 ]。这与大规模量子计算形成了鲜明对比,后者的可能性仍在积极讨论中。Bennett 和 Brassard 的开创性工作为密码学领域提出了一个诱人的可能性: