神经元如何编码信息?最近的工作强调了人口代码的特性,例如其几何形状和可解码信息,这些措施对神经反应的本地调谐(或“轴”)视而不见。,但是这些代表性轴是否有系统地对其他轴进行特权?为了找出答案,我们开发了测试跨大脑和深度卷积神经网络(DCNNS)的神经调节的方法。在视觉和试镜中,大脑和DCNN都始终偏爱某些轴代表自然世界。此外,在NAT-URAL输入中训练的DCNN的代表轴与感知性皮质中的轴对齐,从而使对轴敏感的模型 - 脑相似性指标更好地分化了生物感觉系统的竞争模型。我们进一步表明,对某些轴的特权编码方案可以降低下游布线成本并改善概括。这些结果激发了一个新的框架,以了解生物和人工网络中的神经调整及其计算益处。
摘要:深度学习 (DL) 算法在无损评估 (NDE) 中的应用正成为该领域最有吸引力的主题之一。作为对此类研究的贡献,本研究旨在研究 DL 算法在使用激光超声技术检测和评估螺栓接头松动度方面的应用。本研究基于关于螺栓头板真实接触面积与超声波穿过时损失的导波能量之间关系的假设进行。首先,分别使用 Q 开关 Nd:YAG 脉冲激光器和声发射传感器作为激励和感应超声信号。然后,使用超声波传播成像 (UWPI) 过程创建 3D 全场超声数据集,之后应用多种信号处理技术来生成处理后的数据。通过使用基于 VGG 类架构的回归模型的深度卷积神经网络 (DCNN),计算估计误差以比较 DCNN 在不同处理数据集上的性能。还将所提出的方法与 K 最近邻、支持向量回归和深度人工神经网络进行了比较,以证明其稳健性。因此,发现所提出的方法显示出结合激光生成的超声波和 DL 算法的潜力。此外,信号处理技术已被证明对自动松动估计的 DL 性能具有重要影响。
最严重的疾病困扰着人类的人是心脏病,因此早期诊断和预测心脏病是挽救人类生命的必要条件。心脏病需要早期诊断和预后才能挽救生命。因此,通过使用深度学习算法来避免机器学习中的缺点来完成准确的预测,因为它们使用单独的算法进行特征选择来提取功能。结果,卷积神经网络(CNN)与Aquila优化算法(AOA)结合使用,作为混合深卷积神经网络(DCNN),用于检测心脏。AOA算法用于选择DCNN中的重量参数,该参数在图像上很好地工作。心电图(ECG)图像用于预测心血管疾病。驱动该研究的概念是将ECG图像和临床数据结合在一起,以便在预测中提供高性能。ECG图像已预处理以缩小大小,然后应用CNN并进行预测。在这种情况下,采用了不同的预处理方法,并在这项工作中找到了最佳的预处理方法。ECG图像,并应用了不同的数学方法,例如傅立叶变换,DCT或傅立叶变换和DCT等的组合,并找到最佳方法。然后在MATLAB中实现了所提出的模型,并通过将其与其他现有CNN模型进行比较来评估其性能。关键词:深卷积神经网络,Aquila优化算法,心脏病,
摘要 — 经颅磁刺激 (TMS) 是一种非侵入性、有效且安全的神经调节技术,可用于诊断和治疗神经和精神疾病。然而,大脑组成和结构的复杂性和异质性对准确确定关键大脑区域是否接收到正确水平的感应电场提出了挑战。有限元分析 (FEA) 等数值计算方法可用于估计电场分布。然而,这些方法需要极高的计算资源并且非常耗时。在这项工作中,我们开发了一个深度卷积神经网络 (DCNN) 编码器-解码器模型,用于从基于 T1 加权和 T2 加权磁共振成像 (MRI) 的解剖切片实时预测感应电场。我们招募了 11 名健康受试者,并将 TMS 应用于初级运动皮层以测量静息运动阈值。使用 SimNIBS 管道从受试者的 MRI 开发头部模型。将头部模型的整体尺寸缩放至每个受试者的 20 个新尺寸尺度,形成总共 231 个头部模型。进行缩放是为了增加代表不同头部模型尺寸的输入数据的数量。使用 FEA 软件 Sim4Life 计算感应电场,将其作为 DCNN 训练数据。对于训练好的网络,训练和测试数据的峰值信噪比分别为 32.83dB 和 28.01dB。我们模型的关键贡献在于能够实时预测感应电场,从而准确高效地预测目标脑区所需的 TMS 强度。
摘要 - X射线血管造影中冠状动脉片段和狭窄的冠状动脉片段和狭窄的检测和诊断至关重要,但是,原始图像中图像质量的变化,噪声和伪影造成了当前算法的明确困难。这些问题通过传统方法对有意义的分析构成了挑战,这损害了检测算法的效率。为了克服这些缺点,当前的研究提出了一种新的集成深度学习技术,该技术将深度卷积神经网络(DCNN)与双重条件检测中的生成对抗网络(GAN)相结合。从X射线血管造影图像中提取的详细特征学习是通过DCNN进行的,其中考虑了血管结构和自动病理区域的检测。gan的使用是用合成图像,扭曲和视觉噪声进一步丰富数据集,这将使模型更容易受到各种图像条件的影响。两种方法都将有助于更好地分类正常和病理区域,并且对所获得图像的质量的敏感性降低。因此,提出的方法显示了诊断准确性的提高,作为心血管系统临床决策的坚实基础。已通过以下评估指标证明了建议方法的功效:97.9%的F1得分,98.7%的精度,98.2%的精度和98%的召回率。它通过在困难的成像环境中提供更好的结果来揭示了使用算法进行心血管评估的决定性进步。与传统方法相比,结果证明了牙菌斑和狭窄识别的更高灵敏度和准确性,这证实了使用建议的DCNN-GAN方法来考虑医学成像中实际波动的效率。
深度卷积神经网络(DCNN)的预训练在视觉情绪分析(VSA)领域起着至关重要的作用。大多数提出的方法都采用在大型物体分类数据集(即 ImageNet)上预训练的现成的主干网络。虽然与随机初始化模型状态相比,它在很大程度上提高了性能,但我们认为,仅在 ImageNet 上进行预训练的 DCNN 可能过于注重识别物体,而未能提供情绪方面的高级概念。为了解决这个长期被忽视的问题,我们提出了一种基于人类视觉情绪感知(VSP)机制的面向情绪的预训练方法。具体而言,我们将 VSP 的过程分为三个步骤,即刺激接受、整体组织和高级感知。通过模仿每个 VSP 步骤,我们通过设计的情绪感知任务分别对三个模型进行预训练,以挖掘情绪区分的表示。此外,结合我们精心设计的多模型融合策略,从每个感知步骤中学习到的先验知识可以有效地转移到单个目标模型中,从而获得显着的性能提升。最后,我们通过大量实验验证了我们提出的方法的优越性,涵盖了从单标签学习(SLL)、多标签学习(MLL)到标签分布学习(LDL)的主流 VSA 任务。实验结果表明,我们提出的方法在这些下游任务中取得了一致的改进。我们的代码发布在 https://github.com/tinglyfeng/sentiment_pretraining 。
提出了一种改进的 HHO 技术。该模型自动从 MRI 图像中识别脑肿瘤,通过特征提取进行分类。首先,将脑部的 MRI 图像作为预处理的输入,以生成图像进行进一步处理。之后,通过 Otsu 阈值技术将预处理后的图像引入分割过程。分割过程完成后,提取每个片段中按纹理和统计数据的特征。特征包括肿瘤的大小、方差和均值。此外,在特征向量中,这些提取的特征被公式化。最后,通过 DCNN 和特征向量进行脑肿瘤识别,其中提出的增强型 HHO 训练深度 CNN 技术。
摘要 - 引入了人类手臂和拟人化操纵剂之间的运动学映射,以转移人类的技能并完成类似人类的行为,以控制拟人化的操纵剂。大数据和机器学习的可用性有助于模仿拟人化机器人控制。在本文中,提出了一种机器学习驱动的人类技能,以控制跨倍形操纵器。拟议的深卷积神经网络(DCNN)模型利用旋转运动重建方法模仿类似人类的行为,以实现快速和有效的学习。最后,训练有素的神经网络被翻译成管理拟人机器人机器人的冗余优化控制。这种方法还适用于具有拟人化运动结构的其他冗余机器人。
通过结肠镜检查早期发现和切除腺瘤性息肉仍被认为是预防结直肠癌 (CRC) 的金标准。然而,25% 的腺瘤在检查中被遗漏,这与间隔 CRC 显著相关 [1, 2]。一些研究表明,更高质量的结肠镜退出技术与更低的腺瘤漏诊率相关,并且四项互补的技能有助于提高结肠镜筛查中的检查质量:1) 折叠检查,2) 黏膜清洁,3) 管腔扩张,和 4) 观察时间的充分性 [3]。据报道,作为主要因素,折叠检查与由于结肠镜检查盲点而未出现在视野中的息肉显著相关 [4]。因此,强烈建议在结肠镜检查期间进行折叠检查以评估结肠镜退出技术。然而,缺乏质量监督体系给结肠镜检查质控带来很大挑战。近年来,深度卷积神经网络(DCNN)已成功用于息肉的实时检测,以及肠道准备、拔出速度和拔出时间的评估[5-8]。这些研究表明人工智能(AI)可以间接提高结肠镜检查的质量控制。然而,到目前为止,还没有研究报道使用DCNN对结肠镜拔出技术进行褶皱检查质量(FEQ)评估。本研究旨在开发一种基于人工智能的结肠镜拔出技术FEQ评估系统,并确定该系统对FEQ的评估与专家确定的全结肠FEQ评分之间的关系。我们还旨在分析 FEQ 评分与历史腺瘤检测率 (ADR) 和个体结肠镜检查医师平均退出时间之间的关系,并评估使用基于 AI 的系统是否可以改善临床实践中的 FEQ。
摘要。脑肿瘤是一种因脑细胞异常生长而引起的严重疾病。脑肿瘤大致分为两类,即恶性(癌性)和良性(非癌性)。随着肿瘤的生长,颅骨内的压力会增加,从而损害大脑并危及生命。早期发现和分类脑肿瘤非常重要,因为它有助于选择最合适的治疗方法来挽救患者的生命。通常,医生可以手动进行脑肿瘤检测,或者在脑部 MRI 图像的情况下使用机器学习模型。在文献中,人们发现 CNN、DCNN 和 RNN 等深度学习技术在图像处理应用中表现出良好的效果。本文旨在利用 CNN 深度学习技术有效地检测和分类脑肿瘤。数据集来自 Kaggle。所提出的方法分别通过 CNN 和 Resnet50 实现了 93.5% 和 98.4% 的准确率。