汽车行业正在经历一场革命。电气化、自动驾驶、多样化出行、连通性是彻底改变行业规则的趋势。在所有决定未来汽车革命的决定性主题中,Silicon Mobility 致力于支持电动和混合动力汽车的快速出现。Silicon Mobility 是更清洁、更安全、更智能的出行技术领导者。该公司为汽车行业设计、开发和销售灵活、实时、安全和开放的半导体解决方案,用于提高能源效率和减少污染物排放,同时确保乘客安全。该公司正在其主要研发中心开设 DFT 架构师经理职位,该中心位于法国里维埃拉的索菲亚-安提波利斯科技园。你是一位才华横溢、充满激情的片上系统 DFT 专家?你想支持颠覆性产品的开发,加速汽车动力系统电气化?在 Silicon Mobility,我们希望激发员工的潜力。你准备好迎接挑战了吗?联系我们:将您的简历和求职信发送至 hr@silicon-mobility.com。
摘要 — 我们在此介绍我们在原子模型求解器 ATOMOS 中实现的先进 DFT-NEGF 技术,以探索新型材料和器件(特别是范德华异质结晶体管)中的传输。我们描述了使用平面波 DFT、随后进行 Wannierization 步骤和原子轨道 DFT 的线性组合的方法,分别导致正交和非正交 NEGF 模型。然后,我们详细描述了我们的非正交 NEGF 实现,包括非正交框架内的 Sancho-Rubio 和电子-声子散射。我们还介绍了从第一原理中提取电子-声子耦合并将其纳入传输模拟的方法。最后,我们将我们的方法应用于新型 2D 材料和器件的探索。这包括2D材料选择和动态掺杂FET,以实现最终的小型化MOSFET,vdW TFET的探索,特别是可以实现高导通电流水平的HfS 2 /WSe 2 TFET,以及通过金属半导体WTe 2 /WS 2 VDW结型晶体管的肖特基势垒高度和传输的研究。
与纳米科学结合的方法不仅是一个成本效率的过程,而且不会产生严重的环境危害,因此可以将废物管理技术提升到一个新的水平。石墨烯由具有SP 2杂交的石墨的2D单层纸组成。最近,石墨烯已成为各种科学技术的直接应用的新潜在候选者,即,能量转换和能源存储设备,生物成像,药物输送,燃料电池和生物传感器。2 - 5这主要是由于石墨烯的奇妙特性,例如其高电导率,巨大的表面积,轻量级结构以及出色的机械和拉伸强度。6,7此外,石墨烯纳米片中的金属掺杂增强了其潜在应用,尤其是在储能和转换设备,燃料电池,聚合物复合材料以及生物传感应用中的范围内。6 - 8先前,已经引入了各种方法,用于通过物理蒸气沉积(PVD),化学蒸气沉积(CVD),耦合反应,电化学剥落和Hummers方法以及溶剂分析方法以及液化方法的定性生产。8然而,在科学界社区中,使用环保和成本效率的路线的金属掺杂石墨烯纳米片的批量生产仍然是一个挑战。agw是一个不错的选择,可以用作生产金属掺杂石墨烯纳米片的原材料
摘要 非弹性中子散射 (INS) 是研究固体振动动力学的非常强大的工具。田纳西州橡树岭 SNS 的 VISION 光谱仪在低能量传输下的总通量比其前代产品高出 100 倍,并且具有前所未有的灵敏度。我们将研究 VISION 在 INS 中现在所能达到的极限。从在几分钟内确定可发表质量的 INS 光谱(对于克量范围内的样品),测量毫克范围内样品的信号到直接测定吸附在功能化催化剂上的 2 mmol CO 2 的信号。最后,我们将讨论面临的主要挑战,特别是通过计算机建模和人工智能/机器学习等实现数据分析和解释的自动化方法。 关键词:非弹性中子散射,计算机建模,数据分析 1.简介 VISION 光谱仪位于田纳西州橡树岭散裂中子源 (SNS) 的光束线 16b (BL 16b) 上。VISION 非常独特,因为在大多数情况下,数据分析需要使用 DFT 建模和软件将这些计算机模型转换为可以直接与实验数据进行比较的合成光谱。VISION 是一种间接几何非弹性中子散射光谱仪,在同类仪器中拥有最高的通量和分辨率。主飞行路径距离环境温度下的解耦水慢化剂 16 米 [1]。次要飞行路径为 0.73 米。图 1 所示的次级光谱仪有一个分析器,该分析器由 347 个单晶热解石墨 (PG 002) 晶体(每个晶体面积为 1 cm2)的参数阵列组成,可将散射光束聚焦到 3 个氦管上的一小块区域内。分析器和探测器之间有一个切片铍块,楔块之间有镉片隔开。这些铍滤光片可消除晶体分析器不需要的𝜆/𝑛 反射,起到旁路滤光片的作用。总能量传输范围为 -2 meV 至 1000 meV,并跨越弹性线。对于 5 meV 以上的能量传输,这种仪器的仪器分辨率几乎是能量传输的一小部分 [2]:∆𝜔𝜔 ⁄ ~1.5% (1) 在弹性线上,分辨率为 120 µeV。
替硝唑(TNZ,化学结构式见图1)是第二代硝基咪唑类抗生素1,具有抗菌、抗炎作用,被广泛应用于防治阿米巴原虫、阴道滴虫、贾第鞭毛虫病等感染,也在畜牧业和水产养殖业中用作生长促进剂。2~4然而,随着替硝唑的广泛使用和缺乏适当的监管,环境问题进一步加剧,在一些污水处理厂和淡水系统中被检测到了替硝唑的存在。5残留在水中的替硝唑,即使是低浓度的,也会对人类和环境造成长期的潜在威胁。6因此,如何有效地从环境中去除替硝唑是一个亟待解决的问题。相对于替硝唑降解的研究,其他硝基咪唑的降解方法较多,如吸附、生物降解、Fenton法、光催化等。吸附法广泛应用于有机废水的处理,例如moral-Rodriguez的工作表明,罗硝唑(RNZ)可以通过p-p相互作用吸附在颗粒活性炭(GAC)上。7但这种方法并不能真正去除污染物,只是将污染物从水相转移到固相。8生物方法是另一种常用的方法,但一般比较耗时,
已经考虑了两种不同的模型,即卵烯 (C 32 H 14 ) 和环环烯 (C 54 H 18 ) 及其各自的掺杂模型 (C 31 XH 14 、C 53 XH 18,其中 X = B、Al、N、P、Fe、Ni 和 Pt),用于 GGA-PBE/DNP 级别的 DFT 计算。根据各种计算出的结构参数和电子特性对这两个模型进行了比较。还绘制了电子态密度 (DOS) 光谱,以查看尺寸增加时电子特性的变化。从较小的模型移动到较高的模型时,结构和电子特性没有发生重大变化。发现掺杂保持了表面的平面性,但会引起掺杂原子周围键长发生相对较大的变化,从而削弱键。版权所有 © VBRI Press。关键词:DFT、石墨烯、掺杂、DOS。简介
BIOVIA MATERIALS STUDIO DFTB+ 有什么作用?Materials Studio DFTB+ 能够以量子力学精度优化和研究材料的动态特性,但所需时间却大大缩短。可以优化结构,并使用分子动力学研究结构的时间演变。可以计算和可视化能带结构、原子轨道和费米面等特性,从而深入了解材料的电子结构。可以使用群体分析和电子密度来可视化电荷分布。Materials Studio DFTB+ 使用称为 Slater-Koster 文件的参数库来封装材料中元素之间的相互作用。如果元素未参数化,Materials Studio DFTB+ 会包含一项特定的参数化任务来开发新的参数集,从而能够扩展到新系统。
k 点的数量 = 13 购物车坐标。单位为 2pi/alat K-POINTS k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1250000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.5000000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.2500000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0625000 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1250000 k( 9) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0625000 k( 10) = ( -0.7500000 0.7500000 -0.2500000),wk = 0.2500000 k( 11) = ( -0.5000000 0.5000000 0.0000000),wk = 0.1250000 k( 12) = ( 0.0000000 0.0000000 -1.0000000),wk = 0.0312500 k( 13) = ( 0.0000000 1.0000000 -0.5000000),wk = 0.0625000