hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
短波红外线(SWIR)是基于元图的纳米光谱中电磁频谱的一个不流失的部分,尽管它在传感和成像应用中具有战略意义。这主要归因于缺乏在此范围内量身定制光线与形式相互作用的材料系统。在此处,该限制得到了解决,并在SWIR频率下启用了偏振诱导的偏振诱导的FANO共振控制。该平台由2D SI/GE 0.9 SN 0.1 CORE/SHELL NANOWIRE ARRAY上的硅晶片上的阵列组成。通过调整光极极化,可以表明,由于电动和磁性偶极子竞争中引起的FANO共振,可以对跨表面的反射进行有效的设计。在高索引纳米线阵列中光学诱导的偶极子的干扰是额外的自由度,以量身定制方向散射和光流,同时启用急剧极化的谐振。在纳米传感器中利用了这种固定性,可在周围培养基的折射率上有效检测10-2的变化。
细胞因子释放综合征(CRS)是重症患者死亡的重要原因之一[1,2],它是指由于过度激活或失控的免疫系统产生的极端免疫反应,该系统在病毒入侵时会释放出大量细胞因子。细胞因子是一类由免疫细胞分泌的小分子可溶性肽蛋白。临床研究发现,COVID-19重症监护患者的血清促炎细胞因子水平显着升高。白介素2(IL-2)是典型的细胞因子之一[3,4]。在发生严重CRS之前检测患者血清样品中与CRS相关的细胞因子并在炎症反应中进行介入是临床诊断的重要组成部分,这是正确预先确定的治疗指南的重要指南。由于血清中的细胞因子浓度低(PM范围),因此需要高敏性生物传感器才能检测。Terahertz(THZ)超材料生物传感器是一种无损,无标签,高度敏感的传感器,用于PM级细胞因子检测。但是,大多数典型的超材料是金属基阵列结构,而设备的低Q因子限制了由于高金属损耗而引起的传感器的灵敏度。与金属结构的超材料相比,介电的超材料的损失较低,Q因子较高,并且可以用作THZ超材料生物传感器,以显着提高传感器的灵敏度和检测限。Yang创造性地报道了中的基于硅的双间隙拆分结构Yang创造性地报道了考虑了FANO共振,以进一步改善设备的Q因子,例如,基于硅纳米条[5],不对称 - 切割线超材料[6]的介电FANO共振结构[6],以及连续的全dielectric Boundic boundic boundic body态[7]。
为了制备高击穿电压薄膜,对高击穿电压材料有许多要求,[5,12]例如,介电常数要尽可能大,介电材料在硅衬底上必须是热力学稳定的。[6,8,13]目前对击穿强度的研究工作都是在PECVD/LPCVD上进行的,[10,14]但本实验采用ICP-CVD模型制备氮化硅薄膜,可以提供更多的能量,促进反应气体的分解,制备出击穿强度更大的薄膜。氮化硅薄膜中的氢含量对薄膜的击穿强度影响很大。[15]在薄膜的成分中,Si-H键在薄膜的组成中起着基础性的作用,随着薄膜中氢含量的变化,薄膜的电学性质将发生变化。 [6,16,17]当薄膜中氢含量较高时,硅的悬挂键会被H填充,会增加薄膜的稳定性,提高击穿强度。[18]但关于H含量与薄膜击穿电压的关系,在ICP-CVD机上进行的实验很少,结论也不完善,因此本实验采用ICP-CVD机进行薄膜沉积。[19,20]
介电微球内的光能流通常与光波矢量同向。同时,如果微球中的光场与高质量空间本征模式(回音壁模式 - WGM)之一共振,则阴影半球中会出现反向能量流区域。由于增加了光学捕获潜力,该区域具有相当大的实际意义。在本文中,我们考虑了一个沿粒子直径制造的带有充气单针孔的穿孔微球,并对纳米结构微球中 WGM 激发的特性进行了数值分析。针孔隔离了共振模式的能量回流区域,并将穿孔微球变成了高效的光镊。据我们所知,这是第一次揭示 WGM 共振时针孔中回流强度的多次增强,并讨论了其操纵方式。
从图 8A 的 SEM 结果中还可以观察到,纯 EP 树脂的断口形貌具有非常光滑的横截面和光滑的结构,呈现出明显的河流状形貌,这是典型的脆性断裂特征,表明纯 EP 树脂表现出有限的力学性能。然而,当添加适当含量的 S-TiO 2 (4.0 wt%) 时,EP 树脂的
基于尾场的加速器能够将梯度加速比现有加速器高两个数量级,为实现紧凑型高能物理仪器和光源提供了一条途径。然而,对于高梯度加速器,由相应较高的横向尾场驱动的光束不稳定性会限制光束质量。此前的理论表明,可以通过将平面对称介电结构中的光束横向尺寸椭圆化来减小横向尾场。我们在此报告实验测量结果,这些测量结果表明平面对称结构中椭圆光束的横向尾场减小,这与理论模型一致。这些结果可能有助于设计出基于千兆伏/米梯度尾场的加速器,以产生并稳定加速高质量光束。
摘要 —本文介绍了一种基于半圆柱槽结构的高增益宽带圆柱介质谐振器天线(CDRA)。采用半圆柱槽结构将 CDRA 的高阶 HEM 12 σ 模式与槽谐振模式相结合,实现具有高增益特性的混合辐射模式。为进一步提高天线的实现增益,在不增加水平尺寸和轮廓的情况下对称使用一对寄生金属面板。此外,通过同时使用 HEM 12 σ 模式和槽模式,提出的由微带-带状线馈电结构馈电的高增益宽带 CDRA 实现了 5.92 GHz 的宽带宽。此外,通过利用馈电结构底部作为反射器的作用,无需进一步改进设计即可提高实现的增益。最后,设计、制造并测量了演示原型。所提出的天线在 27 GHz 左右的 22.1% 分数带宽 (FBW) 上实现了 12.9dBi 的峰值增益。测量结果与模拟结果非常吻合。它是 5G 毫米波无线通信的良好候选者。
摘要 - 本文提出了一种基于密度的拓扑处理方案,用于局部优化由损失的分散材料制成的纳米结构中的电力耗散。我们使用复杂偶联的杆子(CCPR)模型,该模型可以准确地对任何线性材料的分散剂进行建模,而无需将它们限制为特定的材料类别。基于CCPR模型,我们在任意分散介质中引入了对电力耗散的时间域度量。CCPR模型通过辅助微分方程(ADE)合并到时域中的麦克斯韦方程中,我们制定了基于梯度的拓扑优化问题,以优化在宽频谱上的耗散。为了估计目标函数梯度,我们使用伴随字段方法,并将伴随系统的离散化和集成到有限差分时间域(FDTD)框架中。使用拓扑优化球形纳米颗粒的示例,由金和硅制成,在可见的 - 粉状谱光谱范围内具有增强的吸收效率。在这种情况下,给出了与基于密度的方法相关的等离子材料拓扑优化的拓扑挑战的详细分析。我们的方法在分散媒体中提供了有效的宽带优化功率耗散的优化。
摘要。从电缆绝缘到先进电子设备,介电材料在众多应用中都备受关注。设备小型化的新趋势使得对能够精确生产纳米级介电薄膜的需求不断增加。此外,通常还需要特殊的机械性能,例如在柔性有机电子领域。聚合物是此目的的首选材料。然而,通过湿化学方法生产具有低缺陷密度且不含残留溶剂等的精确纳米级薄膜极其困难。引发化学气相沉积 (iCVD) 是一种无溶剂聚合物薄膜沉积工艺,可用于生产具有纳米级控制的高质量介电薄膜,从而避免了这些问题。这项工作通过一些新的 iCVD 应用示例展示了 iCVD 工艺在电气应用领域的多功能性。例如,通过在柱状氧化锌 (ZnO:Fe) 气体传感结构上添加疏水性有机硅氧烷薄膜,乙醇到氢气的选择性发生了变化,并且在高湿度水平下的性能也得到了改善。因此,改进后的传感器可用于潮湿环境,尤其是用于呼吸测试,这可以通过尖端的非侵入性方法诊断某些疾病。