在这里,我们提出了Multihive,这是一种通过整合Cite-Seq数据模式来推断细胞嵌入的分层多模式深生成模型。MultiHive采用层次堆叠的潜在变量以及模态 - 特定的潜在变量,分别从模态中捕获共享和私人信息,从而促进集成,DeNoing和插入任务。使用金标准的真实和模拟数据集进行广泛的基准测试,这在整合Cite-seq数据集时表现出了多希夫的优势。多希化在推出缺失的蛋白质测量和与单峰数据集的Cite-Seq数据集的集成方面优于最先进的方法。使用胸腺细胞发育数据集,我们表明多型细胞的嵌入可以改善轨迹推断和基因趋势鉴定。最后,使用跨发育和疾病的数据集,我们证明了将多型提取的deNOCE表达在基因表达程序中分解有助于识别多个细胞层次结构的生物学过程。
摘要本文通过使用基于学习的方法从有限数量的观点中解决了层析成像重建的挑战。通过使用高斯denoing算法的能力来处理复杂的优化任务,通过插入式游戏(PNP)算法的最新进步(PNP)算法显示了求解成像逆概率的希望。传统的denoising手工制作的方法产生具有可预测特征的图像,但需要复杂的参数调整并遭受缓慢的结合。相比之下,基于学习的模型可提供更快的性能和更高的重建质量,尽管它们缺乏解释性。在这项工作中,我们提出培训近端神经网络(PNN),以消除任意伪像并改善PNP算法的性能。这些网络是通过展开旨在找到最大后验(MAP)估计值的近端算法获得的,但使用学习的线性运算符在固定数量的迭代范围内获得。pnns提供了灵活性,可以通过近端算法来适应任何图像恢复任务。此外,与传统的神经网络相比,它们具有更简单的体系结构。
我们通过受限的玻尔兹曼机器(RBMS)研究了二进制图像denoing的框架,该机器(RBMS)引入了二次无约束的二进制优化(QUBO)形式(QUBO)形式的降解目标,并且非常适合用于量子退火。通过平衡训练有素的RBM所学的分布与噪音图像派生的罚款术语来实现dieno的目标。假设目标分布已得到很好的近似,我们得出了惩罚参数的统计最佳选择,并进一步提出了经验支持的修改,以使该方法适合该理想主义假设。我们还在其他假设下表明,我们方法获得的denocer映像严格接近无噪声图像的图像比嘈杂的图像更接近无噪声图像。当我们将模型作为图像剥夺模型时,可以将其应用于任何二进制数据。由于QUBO公式非常适合在量子退火器上实现,因此我们在D-Wave Advantage机器上测试模型,并且还通过通过经典的启发式方法近似Qubo溶液来测试对于电流量子退火器太大的数据。
摘要 - 脑肿瘤需要评估以确保及时诊断和有效的患者治疗。形态学因素,例如大小,位置,纹理和可变外观 - 肿瘤检查。医学成像提出了挑战,包括噪声和不完整的图像。本研究文章介绍了一种处理磁共振成像(MRI)数据的方法,包括用于图像分类和DeNoing的技术。有效使用MRI图像使医疗专业人员可以检测包括肿瘤在内的脑部疾病。这项研究旨在通过分析提供的MRI数据来对健康的脑组织和脑肿瘤进行分类。与诸如计算机断层扫描(CT)之类的替代方法不同,MRI技术提供了内部解剖组件的更详细表示,是研究与脑肿瘤相关的数据的合适选择。MRI图片首先使用各向异性扩散滤波器进行脱氧技术。用于模型创建的数据集是公共访问且经过验证的脑肿瘤分类(MRI)数据库,其中包括3,264次大脑MRI扫描。SMOTE用于数据增强和数据集平衡。卷积神经网络(CNN),例如RESNET152V2,VGG,VIT和EFIDENTEN,用于分类程序。有效网络的精度为98%,是记录最高的。索引术语 - MRI,EfficityNet,脑肿瘤,Smote,CNN
水平生成是程序内容产生(PCG)的主要重点,但是基于深度学习的方法受到稀缺培训数据的限制,即人为设计的水平。尽管是一个主导的框架,但生成的对抗网络(GAN)在产生的和人为实现的水平之间表现出很大的质量差距,以及培训成本上升,尤其是随着令牌复杂性的提高。在本文中,我们引入了一个基于扩散的生成模型,该模型仅从一个示例中学习。我们的方法涉及两个核心组成部分:1)有效而表达的水平代码,以及2)具有受限接收场的潜在denoing网络。首先,我们的方法利用令牌标签(类似于单词嵌入)来提供密集的表示。这种策略不仅超过了代表较大游戏水平的一式式编码,而且还可以提高稳定性并加速潜在扩散的收敛性。此外,我们将denoising网络体系结构调整为良好的接收领域,以局部数据的局部贴片,以促进单个例子学习。广泛的实验表明,与手动设计的水平相比,我们的模型能够生成风格一致的任意大小样本。它适合与基于GAN的方法更少的伪像的广泛水平结构。源代码可在https://github.com/shiqi-dai/ diffusioncraft上找到。
于2023年12月20日收到; 2024年3月27日接受; 2024年4月17日出版作者分支:1 IRD,索邦大学,Ummisco,32 Avenue Henry Varagnat,Bondy Cedex,法国; 2 Sorbonne University,Inserm,Nutriomics,91 BVD de L'Hopital,法国75013,法国。*信函:加斯帕·罗伊(Gaspar Roy),加斯帕(Gaspar。 Jean-Daniel Zucker,Jean-Daniel。Zucker@ird。FR关键字:微生物组;宏基因组学;深度学习;神经网络;嵌入; binning;疾病预测。缩写:ASV,扩增子序列变体; CAE,卷积自动编码器; CGAN,有条件的生成对抗网络; CNN,卷积神经网络; Dae,Denoing AutoCododer; DL,深度学习; FFN,馈送网络; GAN,生成对抗网络;它的内部转录垫片; LSTM,长期记忆; MAG,元基因组组装基因组; MGS,宏基因组; MIL,多个实例学习; ML,机器学习; MLP,多层感知器; NGS,下一代测序; NLP,自然语言处理; NN,神经网络; RNN,经常性神经网络; SAE,稀疏的自动编码器; Sota,艺术状态; SVM,支持向量机; TNF,四核苷酸频率; Vae,各种自动编码器; WGS,全基因组测序。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。补充材料可与本文的在线版本一起使用。001231©2024作者