摘要 - 脑肿瘤需要评估以确保及时诊断和有效的患者治疗。形态学因素,例如大小,位置,纹理和可变外观 - 肿瘤检查。医学成像提出了挑战,包括噪声和不完整的图像。本研究文章介绍了一种处理磁共振成像(MRI)数据的方法,包括用于图像分类和DeNoing的技术。有效使用MRI图像使医疗专业人员可以检测包括肿瘤在内的脑部疾病。这项研究旨在通过分析提供的MRI数据来对健康的脑组织和脑肿瘤进行分类。与诸如计算机断层扫描(CT)之类的替代方法不同,MRI技术提供了内部解剖组件的更详细表示,是研究与脑肿瘤相关的数据的合适选择。MRI图片首先使用各向异性扩散滤波器进行脱氧技术。用于模型创建的数据集是公共访问且经过验证的脑肿瘤分类(MRI)数据库,其中包括3,264次大脑MRI扫描。SMOTE用于数据增强和数据集平衡。卷积神经网络(CNN),例如RESNET152V2,VGG,VIT和EFIDENTEN,用于分类程序。有效网络的精度为98%,是记录最高的。索引术语 - MRI,EfficityNet,脑肿瘤,Smote,CNN
主要关键词