人类学习中有意识意识的必要性一直是心理学和神经科学的长期话题。先前对非意识联想学习的研究受到潜意识刺激的信噪比低的限制,并且证据仍然存在争议,包括不重复复制。使用功能性MRI解码神经反馈,我们指导来自男女的参与者产生类似于视觉感知现实世界实体(例如狗)时观察到的神经模式。重要的是,参与者仍未意识到这些模式所代表的实际内容。我们利用一种联想的十NEF方法将感知含义(例如狗)浸入日本的希拉加纳角色中,这些角色对我们的参与者没有固有的含义,绕开了角色与狗的概念之间的有意识联系。尽管缺乏对神经反馈目标的认识,但参与者还是成功地学会了激活双边锻造形式的目标感知表示。在视觉搜索任务中评估了我们培训的行为意义。ecnef和对照参与者搜索了由Decnef培训期间使用的Hiragana预先塑造的狗或剪刀目标或对照Hiragana。Decnef Hiragana并未对其相关目标进行搜索,但令人惊讶的是,参与者在寻找目标感知类别时受到了损害。因此,有意识的意识可能起作用,以支持高阶关联学习。这项工作还提供了关于神经代表性漂移的ectnef效应的说明。同时,在现有神经表示中的重新学习,修改或可塑性的较低级别形式可能会在不知不觉中发生,并且在原始培训环境之外会产生行为后果。
合成生物学应用了电气工程和信息处理的概念,赋予细胞计算功能。将底层分子成分转移到材料中,并根据受电子电路板启发的拓扑结构进行连接,已经产生了执行选定计算操作的材料系统。然而,现有构建块的有限功能限制了将高级信息处理电路实现到材料中。在这里,设计了一组基于蛋白酶的生物混合模块,其生物活性可以被诱导或抑制。在定量数学模型的指导下,遵循设计-构建-测试-学习 (DBTL) 循环,模块根据受电子信号解码器启发的电路拓扑进行连接,这是信息处理的基本主题。设计了一个 2 输入/4 输出二进制解码器,用于检测材料框架中的两个小分子,这些小分子可以以不同的蛋白酶活性形式执行受调节的输出。这里展示的智能材料系统具有很强的模块化,可用于生物分子信息处理,例如在高级生物传感或药物输送应用中。
通过功能磁共振成像(fMRI)记录的神经反应解码视觉刺激(FMRI)呈现出认知神经科学和机器学习之间的有趣相交,这是理解人类视觉感知的有希望的进步。然而,由于fMRI信号的嘈杂和脑视觉表示的复杂模式,任务是具有挑战性的。为了减轻这些挑战,我们引入了两个阶段fMRI表示框架。第一阶段预训练fMRI功能学习者,其提议的双对抗性掩码自动编码器可以学习DENOCORED表示。第二阶段调谐功能学习者,以通过图像自动编码器的指导来了解视觉重建最有用的神经激活模式。优化的FMRI功能学习者然后调节了一个潜在扩散模型,以重建大脑活动的图像刺激。实验结果证明了我们的模型在产生高分辨率和语义准确的图像方面的优势,从39中实质上超过了先前的最新方法。在50道路-TOP-1语义分类精度中的34%。代码实现将在https://github.com/soinx0629/vis_dec_neurips/上提供。
容错量子计算需要经典硬件来执行纠错所需的解码。并查集解码器是最佳候选解码器之一。它具有非常有机的特性,涉及通过最近邻步骤增长和合并数据结构;这自然表明它有可能使用带有最近邻链接的简单处理器格来实现。这样,计算负载可以以近乎理想的并行性进行分配。在这里,我们首次证明了这种严格(而非部分)局部性是实用的,最坏情况运行时间为 O(d3),平均运行时间在表面代码距离 d 上是亚二次的。我们采用了一种新颖的奇偶校验计算方案,可以简化以前提出的架构,并且我们的方法针对电路级噪声进行了优化。我们将我们的局部实现与通过长距离链接增强的实现进行了比较;虽然后者当然更快,但我们注意到本地异步逻辑可能会消除差异。
容错量子计算需要经典硬件来执行纠错所需的解码。并查集解码器是最佳候选解码器之一。它具有非常有机的特性,涉及通过最近邻步骤增长和合并数据结构;这自然表明它有可能使用带有最近邻链接的简单处理器格来实现。这样,计算负载可以以近乎理想的并行性进行分配。在这里,我们首次证明了这种严格(而非部分)局部性是实用的,最坏情况运行时间为 O(d3),平均运行时间在表面代码距离 d 上是亚二次的。我们采用了一种新颖的奇偶校验计算方案,可以简化以前提出的架构,并且我们的方法针对电路级噪声进行了优化。我们将我们的局部实现与通过长距离链接增强的实现进行了比较;虽然后者当然更快,但我们注意到本地异步逻辑可能会消除差异。
摘要:脑机接口(BCI)利用神经活动作为控制信号,实现人脑与外部设备之间的直接通信,通过脑电图(EEG)捕捉大脑产生的电信号,将其转化为反映用户行为的神经意图,正确解码神经意图才能实现对外部设备的控制。基于强化学习的BCI增强解码器仅基于环境的反馈信号(奖励)完成任务,构建了从神经意图到适应变化环境的动作的动态映射通用框架。但使用传统的强化学习方法存在维数灾难、泛化能力差等挑战。因此,本文利用深度强化学习构建解码器以正确解码EEG信号,通过实验证明其可行性,并在具有高动态特性的运动成像(MI)EEG数据信号上展示其更强的泛化能力。
摘要 - 解码算法允许以增加面积的成本实现极高的吞吐量。查找表(LUTS)可用于替换其他作为电路实现的功能。在这项工作中,我们显示了通过在独立的解码器中精心制作的LUTS代替逻辑块的影响。我们表明,使用LUTS改善关键性能指标(例如,区域,吞吐量,潜伏期)可能比预期更具挑战性。我们提出了三种基于LUT的解码器的变体,并详细描述了它们的内部工作以及电路。基于LUT的解码器与常规展开的解码器进行了比较,该解码器采用固定点表示数字,具有可比的误差校正性能。简短的系统极性代码被用作说明。所有由此产生的展开解码器均显示能够在28 nm FD-SOI技术中以1.4 GHz至1.5 GHz的时钟进行少于10 Gbps的信息吞吐量。与常规展开的解码器相比,我们的基于LUT的解码器的最佳变体可将面积的需求降低23%,同时保留可比的错误校正性能。
摘要:大脑是人类控制和交流的中心。因此,保护它并为其提供理想条件非常重要。脑癌仍然是世界上死亡的主要原因之一,并且检测恶性脑肿瘤是医疗图像分割的优先事项。与正常组织相比,脑肿瘤分割任务旨在鉴定属于异常区域的像素。深度学习近年来已经解决了解决这个问题的力量,尤其是类似U-Net的架构。在本文中,我们提出了一个有效的U-NET架构,其中包含三个不同的编码器:VGG-19,Resnet50和MobilenetV2。这是基于转移学习,然后是应用于每个编码器的双向特征金字塔网络,以获得更多的空间相关特征。然后,我们融合了从每个网络的输出中提取的特征图,并通过注意机制将它们合并到我们的解码器中。在Brats 2020数据集上评估了该方法,以分割不同类型的肿瘤,结果在骰子相似性方面表现出良好的性能,整个肿瘤,核心肿瘤和增强肿瘤的系数为0.8741、0.8069和0.7033。
多形性胶质母细胞瘤是一种侵袭性脑肿瘤,由于其侵袭性生长动力学,其存活率是所有人类癌症中最低的。这些动力学导致复发性肿瘤袋隐藏在医学影像之外,而标准的放射治疗和手术边缘无法覆盖这些肿瘤袋。通过偏微分方程 (PDE) 对肿瘤生长进行数学建模是众所周知的;然而,由于运行时间长、患者间解剖差异大以及忽略患者当前肿瘤的初始条件,它仍未在临床实践中采用。本研究提出了一种多形性胶质母细胞瘤肿瘤演化模型 GlioMod,旨在学习肿瘤浓度和大脑几何形状的时空特征,以制定个性化治疗计划。使用基于 PDE 的建模,从真实患者解剖结构生成 6,000 个合成肿瘤的数据集。我们的模型采用图像到图像回归,使用一种新颖的编码器-解码器架构来预测未来状态下的肿瘤浓度。 GlioMod 的测试是模拟肿瘤生长和重建患者解剖结构,在 900 对未见脑几何结构上与 PDE 求解的未来肿瘤浓度相对应。我们证明,通过神经建模实现的时空背景可以产生针对患者个性化的肿瘤演化预测,并且仍然可以推广到未见解剖结构。其性能在三个方面衡量:(1) 回归误差率、(2) 定量和定性组织一致性,以及 (3) 与最先进的数值求解器相比的运行时间。结果表明,GlioMod 可以高精度地预测肿瘤生长,速度提高了 2 个数量级,因此适合临床使用。GlioMod 是一个开源软件包,其中包括我们研究中从患者生成的合成肿瘤数据。
摘要 — 经颅磁刺激 (TMS) 是一种非侵入性、有效且安全的神经调节技术,可用于诊断和治疗神经和精神疾病。然而,大脑组成和结构的复杂性和异质性对准确确定关键大脑区域是否接收到正确水平的感应电场提出了挑战。有限元分析 (FEA) 等数值计算方法可用于估计电场分布。然而,这些方法需要极高的计算资源并且非常耗时。在这项工作中,我们开发了一个深度卷积神经网络 (DCNN) 编码器-解码器模型,用于从基于 T1 加权和 T2 加权磁共振成像 (MRI) 的解剖切片实时预测感应电场。我们招募了 11 名健康受试者,并将 TMS 应用于初级运动皮层以测量静息运动阈值。使用 SimNIBS 管道从受试者的 MRI 开发头部模型。将头部模型的整体尺寸缩放至每个受试者的 20 个新尺寸尺度,形成总共 231 个头部模型。进行缩放是为了增加代表不同头部模型尺寸的输入数据的数量。使用 FEA 软件 Sim4Life 计算感应电场,将其作为 DCNN 训练数据。对于训练好的网络,训练和测试数据的峰值信噪比分别为 32.83dB 和 28.01dB。我们模型的关键贡献在于能够实时预测感应电场,从而准确高效地预测目标脑区所需的 TMS 强度。