一般而言,为了帮助在神经LAM和基于图的天气模型中进一步开发不同的图形体系结构,在神经LAM中已经开发了功能,以通过创建单个图形组件来构建与图神经网络一起使用的图。这将图形组件的创建(表示为networkx.digraph对象)分开,该图形组成了消息通话的不同部分[4]图; GRID2MESH(ENCODE),MESH2MESH(PROCESS)和MESH2GRID(DECODE),从序列化中加载到模型中的pytorch_geometric.data数据架构中。后一个步骤的分离实现了实现基于图的天气预测建模的不同代码基础的目标。