摘要 — 近年来,人们对利用基于脑电图 (EEG) 信号的深度学习模型监测癫痫患者的兴趣日益浓厚。然而,这些方法在应用于收集训练数据的环境之外时,往往表现出较差的泛化能力。此外,手动标记 EEG 信号是一个耗时的过程,需要专家分析,这使得将特定于患者的模型微调到新环境成为一项昂贵的任务。在这项工作中,我们提出了最大均值差异解码器 (M2D2),用于自动时间定位和标记长时间 EEG 记录中的癫痫发作,以协助医疗专家。我们表明,当对不同于训练数据的临床环境中收集的 EEG 数据进行评估时,M2D2 实现了 76.0% 和 70.4% 的时间定位 F1 分数。结果表明,M2D2 的泛化性能明显高于其他最先进的基于深度学习的方法。
创建灵活而强大的脑机接口 (BMI) 目前是一个热门的研究课题,医学、工程、商业和机器学习社区已经对此进行了数十年的探索。特别是,使用强化学习 (RL) 的技术已显示出令人印象深刻的结果,但在 BMI 社区中却代表性不足。为了进一步阐明这种有希望的关系,本文旨在对 RL 在 BMI 中的应用进行详尽的回顾。我们在这篇评论中的主要重点是提供基于 RL 的 BMI 中用于解码神经意图的各种算法的技术摘要,而不强调神经信号的预处理技术和 RL 的奖励建模。我们首先根据用于神经解码的 RL 方法类型组织文献,然后解释每种算法的学习策略及其在 BMI 中的应用。提供了比较分析,重点介绍了神经解码器之间的相似性和独特性。最后,我们以讨论 RLBMI 的现阶段结束这篇评论,包括它们的局限性和未来研究的有希望的方向。
计算建模是现代药物发现的重要组成部分。其最重要的应用之一是选择有希望的药理学相关靶蛋白候选药物。由于结构生物学的不断进步,在与各种疾病相关的众多蛋白质中发现了小有机分子的假定结合位点。这些宝贵的数据为通过应用数据挖掘和机器学习来构建预测靶位结合分子的有效计算模型提供了新的机会。特别是,深度神经网络是一种强大的技术,能够从复杂数据中学习,从而做出明智的药物结合预测。在本文中,我们描述了 Pocket2Drug,这是一种深度图神经网络模型,用于预测给定配体结合位点的结合分子。这种方法首先从大量口袋结构数据集中通过监督训练学习小分子的条件概率分布,然后从训练模型中抽样候选药物。全面的基准模拟表明,与传统的药物选择程序相比,使用 Pocket2Drug 显著提高了找到与靶口袋结合的分子的机会。具体来说,已知结合物针对测试集中存在的多达 80.5% 的靶标生成,而测试集由与用于训练深度图神经网络模型的数据不同的数据组成。总体而言,Pocket2Drug 是一种很有前途的计算方法,可用于指导新型生物制药的发现。
随着嘈杂的中型量子 (NISQ) 设备的出现,实用的量子计算似乎已经触手可及。然而,要超越原理验证计算,当前的处理架构将需要扩展到更大的量子电路,这将需要快速且可扩展的量子误差校正算法。在这里,我们提出了一种基于神经网络的解码器,对于受去极化噪声和综合征测量误差影响的稳定器代码系列,该解码器可扩展到数万个量子比特(与其他最近的机器学习启发解码器相比),并且在各种错误率(低至 1%)下解码时间比最先进的联合查找解码器更快。关键创新是通过在底层代码上移动预处理窗口来自动解码小规模的错误综合征,类似于模式识别方法中的卷积神经网络。我们表明,这种预处理步骤可以在实际应用中有效地将错误率降低多达 2 个数量级,并且通过检测相关效应,将实际错误阈值提高到比传统纠错算法(例如联合查找或最小权重完美匹配)的阈值高出 15%,即使在存在测量误差的情况下也是如此。这种机器学习辅助量子纠错的现场实施将是将纠缠边界推向 NISQ 视界之外的决定性一步。
量子设备的错误率比运行大多数量子应用程序所需的错误率高出几个数量级。为了弥补这一差距,量子纠错 (QEC) 对逻辑量子位进行编码并使用多个物理量子位分发信息。通过定期对逻辑量子位执行综合征提取电路,可以在运行程序时提取有关错误(称为综合征)的信息。解码器使用这些综合征来实时识别和纠正错误,这对于防止错误累积是必要的。不幸的是,软件解码器速度很慢,而硬件解码器速度快但准确性较低。因此,到目前为止,几乎所有的 QEC 研究都依赖于离线解码。为了在近期的 QEC 中实现实时解码,我们提出了 LILLIPUT——一种轻量级低延迟查找表解码器。LILLIPUT 由两部分组成——首先,它将综合征转换为错误检测事件,这些事件被索引到查找表 (LUT) 中,其条目实时提供错误信息。其次,它通过离线运行软件解码器,对 LUT 进行错误分配编程,以应对所有可能的错误事件。LILLIPUT 可以容忍量子硬件中任何操作的错误,包括门和测量,并且可容忍的错误数量随着代码大小而增加。LILLIPUT 在现成的 FPGA 上使用的逻辑不到 7%,因此可以实际采用,因为 FPGA 已经用于设计现有系统中的控制和读出电路。LIL-LIPUT 的延迟只有几纳秒,可以实现实时解码。我们还提出了压缩 LUT (CLUT) 来减少 LILLIPUT 所需的内存。通过利用并非所有错误事件都同样可能的事实,并且只存储最可能的错误事件的数据,CLUT 将所需内存减少了多达 107 倍(从 148 MB 减少到 1.38 MB),而不会降低准确性。
*通信:Cynthia A. Chestek博士生物医学工程B10-A171 NCRC Ann Arbor MI 48109-2800电话:734-763-1759
磁共振成像(MRI)自动脑肿瘤分割的主要任务是自动分割脑肿瘤水肿,腹部水肿,内窥镜核心,增强肿瘤核心和3D MR图像的非增强肿瘤核心。由于脑肿瘤的位置,大小,形状和强度差异很大,因此很难自动分割这些脑肿瘤区域。在本文中,通过结合Densenet和Resnet的优点,我们提出了一个新的3D U-NET,具有密集的编码器块和残留的解码器块。我们在编码器部分中使用了密集的块和解码器部分中的残留块。输出特征图的数量随编码器的收缩路径中的网络层增加而增加,这与密集块的特征一致。使用密集的块可以减少网络参数的数量,加深网络层,增强特征传播,减轻消失的梯度和扩大接收场。在解码器中使用残差块来替换原始U-NET的卷积神经块,这使网络性能更好。我们提出的方法在BRATS2019培训和验证数据集上进行了培训和验证。我们在BRATS2019验证数据集上分别获得了整个肿瘤,肿瘤核心和增强肿瘤核心的骰子得分,分别为0.901、0.815和0.766。我们的方法比原始的3D U-NET具有更好的性能。我们的实验结果表明,与某些最新方法相比,我们的方法是一种竞争性的自动脑肿瘤分割方法。
摘要:在手工艺实践中,通过制作和应用技术规则的实践经验来构建体现知识(“编码”),随后通过反思和分析解构(“解码”),然后重建(“重新编码”)进一步发展实践和成果。在本文实践领导的博士学位研究中,用于开发综合编织服装,以证明过程和对象分析在创造性实践的发展以及从手到数字生产的成功过渡中所发挥的至关重要的作用。在手工编织和计算机使用之间绘制相似之处,它探讨了编织中固有的“数字思维”如何促进与数字编织技术的富有成效关系。作为“视觉论文”提出,本文旨在利用一种主要的视觉方法来弥合隐式和显式知识之间的差距,以最大限度地提高研究的范围,以平等的清晰度传达隐式和明确的知识,并为实践领导的研究传播替代方法。
大脑的摘要节奏是由多个频率的神经振荡产生的。这些振荡可以分解为与特定生理过程相关的不同频率间隔。实际上,可解码频率间隔的数量和范围是通过抽样参数确定的,通常被研究人员忽略。为了改善情况,我们在开放的工具箱上报告了带有图形用户界面,用于解码大脑系统的节奏(Dream)。我们提供了梦想的示例,以研究神经(自发性大脑活动)和神经行为(扫描剂头部运动)振荡的特定于频率的性能。Dream解码了头部运动的振荡,并发现年幼的孩子在所有五个频率间隔中都比大孩子更多地移动头部,而男孩在7至9岁时移动的人数超过了女孩。有趣的是,较高的频带包含更多的头部运动,并且显示出更强的年龄相关性,但性运动相互作用较弱。使用来自人类Connectome项目的数据,Dream将这些神经振荡的幅度映射到了多个频段中,并评估了其重测的可靠性。静止状态的大脑将其自发振荡的振幅从空间上的振幅从腹侧颞区的高振幅排名到腹侧 - 枕骨区域的低位,而频带从低至高增加到高,而在壁和腹侧额叶区域的部分则相反。较高的频段表现出更可靠的振幅测量值,这意味着较高频段的振幅的个体间变异性更大。总而言之,Dream添加了一个可靠且有效的工具,可将人脑功能从多频窗口映射到脑波中。
书籍章节 卷积网络在从脊髓信号预测肌电图方面优于线性解码器 Yi Guo 1 *、Sinan Gok 2 和 Mesut Sahin 2 1 美国混合智能实验室有限责任公司 2 美国新泽西理工学院生物医学工程系神经假体实验室 *通讯作者:Yi Guo,混合智能实验室有限责任公司,加利福尼亚州威尼斯,美国 2020 年 10 月 19 日发布 本书章节是 Yi Guo 等人发表的文章的再版。于 2018 年 10 月在 Frontiers in Neuroscience 上发表。 (Guo Y、Gok S 和 Sahin M (2018) 卷积网络在预测脊髓信号中的 EMG 方面优于线性解码器。Front. Neurosci. 12:689。doi: 10.3389/fnins.2018.00689) 如何引用本书章节:Yi Guo、Sinan Gok、Mesut Sahin。卷积网络在预测脊髓信号中的 EMG 方面优于线性解码器。在:Jose Fernando Maya-Vetencourt,编辑。Prime Archives in Neuroscience。海得拉巴,印度:Vide Leaf。 2020。© 作者 2020。本文根据知识共享署名 4.0 国际许可条款发布(http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当引用。道德声明:所有程序均经新泽西州纽瓦克市罗格斯大学机构动物护理和使用委员会 (IACUC) 批准。