Maria Perepechaenko 和 Randy Kuang Quantropi Inc.,加拿大渥太华 电子邮件:maria.perepechaenko@quantropi.com;randy.kuang@quantropi.com 摘要 — 我们介绍了 Kuang 等人的量子排列垫 (QPP) 的功能实现,使用目前可用的国际商业机器 (IBM) 量子计算机上的 Qiskit 开发套件。对于此实现,我们使用一个带有 28 个 2 量子比特排列门的垫,可提供 128 位熵。在此实现中,我们将明文分成每块 2 位的块。每个这样的块一次加密一个。对于任何给定的明文块,都会创建一个量子电路,其中的量子位根据给定的明文 2 位块初始化。然后使用从 28 排列 QPP 垫中选择的 2 量子比特排列运算符对明文量子位进行操作。由于无法直接发送量子比特,因此密文量子比特通过经典信道进行测量并传输到解密方。解密可以在经典计算机或量子计算机上进行。解密使用逆量子置换垫和用于加密的相应置换门的 Hermitian 共轭。我们目前正在推进 QPP 的实施,以包括额外的安全性和效率步骤。索引术语 — 量子通信、量子加密、量子解密、量子安全、安全通信、QPP、Qiskit、国际商业机器量子 (IBMQ)
摘要 - 这项研究引入了一个专门为医疗物联网设备设计的轻量级图像加密框架,并利用了6D混沌图与XOR扩散,像素置换量和可选替换层结合使用。该方法利用了高维混沌系统的固有随机性,刻薄性和敏感性来实现敏感的医学图像的强大加密和安全传播,包括X射线,MRIS和ECGS。全面的评估表明,该框架有效地破坏了空间连贯性,达到了几乎零像素相关性和高熵(〜8),同时保持适合资源受限物联网环境的计算效率。加密方案表现出对输入变化的显着敏感性,平均NPCR为99.6%,UACI超过33%,突出了其对差异和统计攻击的鲁棒性。对传统和低维混沌加密方法的比较分析表明,该算法在加密安全性和性能之间提供了卓越的平衡。调查结果表明,所提出的系统是在医学物联网应用程序中实时,安全图像处理的可行解决方案。未来的研究将研究自适应参数调整以及机器学习的整合以提高加密效率和鲁棒性。。关键字 - 6D混沌图,轻质加密,XOR扩散,医学物联网安全性,像素排列。
本研究的重点是使用Zebra Crossing(ZXing)算法为亚洲护理和技术教育中心公司(ACTEC)开发出勤监测系统,以提高效率和数据安全。该应用程序充当在线平台,教师可以通过QR码来监视出勤率,以解决手动方法的效率低下,这些效率很耗时,并且很容易记录保存错误。通过实施两层安全功能,包括验证代码和基于位置的访问,该系统增强了数据保护,从而降低了未经授权的个人或试图远程记录出勤率的未经授权的个人或学生进行操纵的风险。结果表明,新系统通过仅允许授权的现场学生记录出勤率来提高出勤率的可靠性和完整性,这对提高记录准确性,管理效率和安全数据处理的直接影响。此外,这些措施保护了潜在的安全漏洞和未经授权的访问,这是至关重要的,因为教育机构越来越多地采用数字系统。因此,这项研究表明,将多层安全性与QR代码技术相结合可以作为类似出勤监视系统的模型,最终为更可信赖,具有成本效益和简化的教育管理过程做出了贡献。关键字:出勤监视,解密,加密,QR码,ZXing算法1。没有强大的安全性,引言在监视学校出勤时,现有系统依赖于调用学生名称并使用纸质表,这很耗时,并且容易出现影响出勤准确性和成绩计算的错误。
信号量文件是一个空文件,指示数据文件已完成并准备进一步处理。示例:每次交易发送的文件对:文件名.pgp和文件名.SEM•CALPERS文件传输服务将以预定的间隔上传加密的数据文件到FTP位置。•外部合作伙伴将以自己的预定时间间隔从FTP位置检索文件。•外部合作伙伴的应用程序将寻找带有.SEM文件扩展名的文件名。这将表明具有相同名称和.pgp扩展名的数据文件可用于处理。此时,合作伙伴的应用程序可以将数据文件下载到交易合作伙伴的系统中。•成功下载数据文件后,交易伙伴的流程将将数据文件从.pgp扩展名重命名为.fin扩展名。此重命名过程将表明已处理文件并可以删除。FTS清理服务将删除文件名.fin和FileName .SEM文件。
I.在网络安全和信息保护领域的引言中,对称密码学是基础,刺激数据并维护机密性的纯度[19]。在其核心上,对称密码学围绕着秘密关键生成元素程序的关键过程,该过程加强了安全的通信和数据加密。本文深入研究了对称密码学的复杂领域,揭示了秘密密钥生成的本质及其在保护数字信息中必不可少的作用[1]。对称密码学依赖于单个共享密钥来加密和解密数据。此共享密钥的起源在于关键产生的细致过程。这个基本过程是通过使用随机数生成器来制作独特加密密钥的。此密钥用作数据安全性的关键,提供了将明文转换为密文的机制,反之亦然。确保此键保持秘密,并且不受未经授权的访问的不渗透,这对于保留加密数据的完整性和机密性至关重要[2]。对称密码学中秘密密钥的重要性不能被夸大。充当信息,通过该导管,秘密钥匙封装了安全通信的本质。它的一代算法是精心制作的,以阻止对抗性的尝试,以猜测或反向工程钥匙。这种算法的复杂性可确保对密码保持弹性
近 20 年前建立的法律框架如今已难以跟上量子计算和人工智能等技术的快速发展以及不断发展的网络威胁形势。2002 年,加利福尼亚州通过了第一部数据泄露通知法,随后美国全部 50 个州纷纷效仿,要求对未经授权访问和获取个人隐私信息的行为进行通知。1 这些数据泄露通知法最初旨在捕获一次性未经授权查看计算机数据库中的数据,却无法解决网络恐怖分子在数千台服务器上运行的 PowerShell 脚本,这些脚本会留下自动访问的数据。同样,这些法规中内置的加密安全港在设计时也没有考虑到量子计算及其量子解密的可能性。不断发展的技术和威胁要求各州制定适合现代的数据泄露通知法。本评论分析了这些挑战之间的相互作用,并讨论了前进的道路。