我们研究了深层生成模型对即将到来的计算机视觉模型中潜在社会偏见的影响。互联网目睹了a-a-a-a-aford图像的涌入,因此对可能伴随的固有偏见产生了担忧,这可能导致有害内容的分离。本文探讨了如果将生成的图像用作未来模型的训练数据,是否会发生有害的反馈回路,导致偏差。我们通过逐步将可可和CC3M数据集中的原始图像替换为通过稳定的差异生成的图像来进行模拟。修改后的数据集用于训练OpenCLIP和图像字幕模型,我们根据质量和偏差进行评估。与期望相反,我们的发现表明,在训练期间引入产生的图像并不能统一扩大偏见。相反,观察到跨特定任务的偏置缓解实例。我们进一步阐述了可能影响这些现象的因素,例如图像生成中的伪像(例如,模糊的面孔)或原始数据集中的预先偏见。
[13] Ramjee,S.,Ju,S.,Yang,D.,Liu,X.,Gammal,A.E。,&Eldar,Y。C.(2019)。 快速快速
co1:确定无限级数在工程方面的收敛性。二氧化碳:了解定向衍生物,无旋转和电磁载体场的概念。CO3:在工程问题中应用差分和整体演算的概念。 CO4:分析在线性和非线性域中获得的溶液。 二氧化碳:评估复杂领域的数学问题。 二氧化碳:评估格林,斯托克斯和发散定理的问题。 文本/参考书1。 B. Grewal,高级工程数学,Khanna Pub。 2。 R. K. Jain和S. R. K. Iyengar,Alpha Science高级工程数学。 3。 Erwin Kreyszig,高级工程数学,约翰·威利(John Wiley)。 4。 G. Strang,线性代数及其应用,Cengage Learning。 5。 K. Hoffman和R. A. Kunze,印度Prentice Hall Linear Algebra。CO3:在工程问题中应用差分和整体演算的概念。CO4:分析在线性和非线性域中获得的溶液。二氧化碳:评估复杂领域的数学问题。二氧化碳:评估格林,斯托克斯和发散定理的问题。文本/参考书1。B.Grewal,高级工程数学,Khanna Pub。2。R. K. Jain和S. R. K. Iyengar,Alpha Science高级工程数学。 3。 Erwin Kreyszig,高级工程数学,约翰·威利(John Wiley)。 4。 G. Strang,线性代数及其应用,Cengage Learning。 5。 K. Hoffman和R. A. Kunze,印度Prentice Hall Linear Algebra。R. K. Jain和S. R. K. Iyengar,Alpha Science高级工程数学。3。Erwin Kreyszig,高级工程数学,约翰·威利(John Wiley)。4。G. Strang,线性代数及其应用,Cengage Learning。5。K. Hoffman和R. A. Kunze,印度Prentice Hall Linear Algebra。
我保证,据我所知,我的论文不侵犯任何人的版权,也不违反任何专有权利,并且我的论文中包含的任何想法、技术、引用或来自他人作品的任何其他材料(无论是否已发表)均已根据标准引用惯例完全承认。此外,如果我所包含的受版权保护的材料超出了《印度版权法》所规定的公平使用范围,我保证我已获得版权所有者的书面许可,可以将此类材料纳入我的论文中,并将此类版权许可的副本附在我们的附录中。
医学是深度学习模型的重要应用领域。该领域的研究是医学专业知识和数据科学知识的结合。在本文中,我们引入了一个开放的三维颅内动脉瘤数据集 IntrA,而不是二维医学图像,这使得基于点和基于网格的分类和分割模型的应用成为可能。我们的数据集可用于诊断颅内动脉瘤和提取颈部以进行医学和深度学习其他领域(如正常估计和表面重建)的夹闭手术。我们通过测试最先进的网络提供了一个大规模分类和部分分割的基准。我们还讨论了每种方法的性能,并展示了我们数据集的挑战。发布的数据集可以在这里访问:https://github.com/intra3d2019/IntrA。
[1] R. Sutton和A. Barto,《加固学习简介》,麻省理工学院出版社,1998年。[2] C. Szepesvari,《增强学习算法》,Morgan&Claypool Publishers,2010年。[3] C. Watkins,从延迟的奖励中学习,博士学位论文,剑桥大学,英格兰,1989年。[4] M. Wiering和M. Van Otterlo,加固学习:最新的ART,Springer,2014年。[5] M. Puterman,马尔可夫决策过程:离散随机动态编程,Wiley,1994年。[6] D. P. Bertsekas,动态编程和最佳控制,第一卷和II,雅典娜科学,2017年。[7] W. B. Powell,近似动态编程,Wiley,2011年。[8]选定的纸
安全信息................................................................................................................................................................................................................................................................................................................................................................... Intended Users......................................................................................................... 2 Clinical Benefit......................................................................................................... 3 Device Lifetime......................................................................................................... 3禁忌症.................................................................................................................................................................................................................................................................................................................................................................事件............................................................................................................................................................................................................................................................................................................................................. 13
目前的深度学习算法可能无法在大脑中运行,因为它们依赖于权重传输,即前向路径神经元将其突触权重传输到反馈路径,而这种方式在生物学上可能是不可能的。一种称为反馈对齐的算法通过使用随机反馈权重实现了没有权重传输的深度学习,但它在困难的视觉识别任务上表现不佳。在这里,我们描述了两种机制——一种称为权重镜像的神经回路和 1994 年 Kolen 和 Pollack 提出的算法的修改——这两种机制都允许反馈路径即使在大型网络中也快速准确地学习适当的突触权重,而无需权重传输或复杂的布线。在 ImageNet 视觉识别任务上进行测试,这些机制的学习效果几乎与反向传播(深度学习的标准算法,使用权重传输)一样好,并且它们优于反馈对齐和另一种较新的无传输算法符号对称方法。
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
- “心律失常检测” - “心电图心律失常” - “室性心律失常” - “室上性心律失常” - “早搏” - “心脏传导阻滞” - “心动过缓” - “心动过速” - “12 导联心电图” - “心脏信号处理” - “心电图中的深度学习” - “CNN” - “DNN” - “LSTM” - “Transformers” - “混合模型”