本文介绍了 DeepFLASH,一种用于基于学习的医学图像配准的高效训练和推理的新型网络。与从高维成像空间中的训练数据中学习空间变换的现有方法相比,我们完全在低维带限空间中开发了一种新的配准网络。这大大降低了昂贵的训练和推理的计算成本和内存占用。为了实现这一目标,我们首先引入复值运算和神经架构表示,为基于学习的配准模型提供关键组件。然后,我们构建了一个在带限空间中完全表征的变换场的显式损失函数,并且参数化要少得多。实验结果表明,我们的方法比最先进的基于深度学习的图像配准方法快得多,同时产生同样精确的对齐。我们在两种不同的图像配准应用中展示了我们的算法:2D 合成数据和 3D 真实脑磁共振 (MR) 图像。我们的代码可以在https://github.com/jw4hv/deepflash上找到。
医学是深度学习模型的重要应用领域。该领域的研究是医学专业知识和数据科学知识的结合。在本文中,我们引入了一个开放的三维颅内动脉瘤数据集 IntrA,而不是二维医学图像,这使得基于点和基于网格的分类和分割模型的应用成为可能。我们的数据集可用于诊断颅内动脉瘤和提取颈部以进行医学和深度学习其他领域(如正常估计和表面重建)的夹闭手术。我们通过测试最先进的网络提供了一个大规模分类和部分分割的基准。我们还讨论了每种方法的性能,并展示了我们数据集的挑战。发布的数据集可以在这里访问:https://github.com/intra3d2019/IntrA。
如何开发精简而准确的深度神经网络对于实际应用至关重要,尤其是对于嵌入式系统中的应用。尽管之前沿着该研究方向的工作已经显示出一些有希望的结果,但是大多数现有方法要么无法显著压缩训练有素的深度网络,要么需要对修剪后的深度网络进行大量再训练才能重新提高其预测性能。在本文中,我们提出了一种新的深度神经网络分层修剪方法。在我们提出的方法中,每个单独层的参数都基于相应参数的分层误差函数的二阶导数独立地进行修剪。我们证明,修剪后最终的预测性能下降受每层造成的重构误差的线性组合限制。通过适当控制分层误差,只需对修剪后的网络进行轻度再训练即可恢复其原始的预测性能。我们在基准数据集上进行了大量实验,以证明我们的修剪方法与几种最先进的基线方法相比的有效性。我们的工作代码发布在:https://github.com/csyhhu/L-OBS 。
“水下时间”仅受潜水员疲劳和任务时间压缩的限制;原本需要一周时间的维护任务(包括计算舱和水下时间)可以在一天内完成。Can-Dive 已经研究 Newtsuit 三年了,它仍处于研发阶段,但计划于今年进行高级操作试验。这一发展最终可能被证明是一个完整的循环 spinotaf,它从航空航天技术转移,并最终产生可转移到航空航天系统的技术进步。NASA 正在研究用于舱外活动的宇航服设计,因为
采用替代能源和电力系统将在DLODs 7中具有含义,这些含义的性质将根据所考虑的技术以及所考虑的能力的具体需求而有所不同。防御能力以及相关的设备,平台和系统,支持基础架构,操作概念,学说和物流管理继续发展。在上个世纪或更多世纪,基于碳氢化合物的能源和功率系统在国防应用中的普遍存在决定了当前的方法受碳氢化合物作为作为储能和分配的主要手段的作用的重大影响。对这种方法的任何偏差都将具有广泛的考虑因素,远远超出了替代方法的技术可行性。
目前的深度学习算法可能无法在大脑中运行,因为它们依赖于权重传输,即前向路径神经元将其突触权重传输到反馈路径,而这种方式在生物学上可能是不可能的。一种称为反馈对齐的算法通过使用随机反馈权重实现了没有权重传输的深度学习,但它在困难的视觉识别任务上表现不佳。在这里,我们描述了两种机制——一种称为权重镜像的神经回路和 1994 年 Kolen 和 Pollack 提出的算法的修改——这两种机制都允许反馈路径即使在大型网络中也快速准确地学习适当的突触权重,而无需权重传输或复杂的布线。在 ImageNet 视觉识别任务上进行测试,这些机制的学习效果几乎与反向传播(深度学习的标准算法,使用权重传输)一样好,并且它们优于反馈对齐和另一种较新的无传输算法符号对称方法。
深度神经网络是一种复杂的结构化系统,它以并行、分布式和上下文敏感的方式处理信息,而深度学习则是利用这些系统通过依赖经验的学习过程获得与智能相关的能力的努力。在人工智能领域,深度学习的工作通常旨在利用所有可用的工具和资源来创造和理解智能,而不考虑其生物学合理性。然而,深度学习的许多核心思想都从大脑和人类智能的特征中汲取灵感,我们认为这些受大脑启发的系统最能捕捉这些特征(Rumelhart、McClelland 和 PDP 研究小组,1986 年)。此外,深度学习研究中出现的想法可以帮助我们了解人类和动物的记忆和学习。因此,深度学习研究可以看作是研究人员之间相互交流的沃土,这些研究人员研究的相关问题对生物智能和机器智能都有影响。
帕金森运动症状与基底神经节中病理上增加的β振荡有关。虽然药理学治疗和深脑刺激(DBS)降低了这些病理振荡,并随着运动性能的提高而降低了这些病理振荡,但我们着手探索神经反馈作为内源性调节方法。我们通过植入的DBS电极实施了病理性亚丘脑β振荡的实时处理,以提供深脑电气神经反馈。患者在训练后几分钟内通过视觉神经反馈进行了视觉控制的β振荡活动。在一次单小时的训练中,β振荡活动的减少逐渐变得更强大,我们观察到了运动性能的提高。最后,即使去除视觉神经反馈后,对深脑活动的内源性控制也是可能的,这表明在短期内保留了神经反馈获得的策略。此外,我们观察到2天后学习的心理策略在没有神经反馈的情况下进行了改善。进一步训练深脑神经反馈可能会通过使用神经反馈优化的策略来改善症状控制,从而为帕金森患者提供治疗益处。
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
