•2023年11月2日,DeepSeek编码器模型发布了。•2024年12月,DeepSeek-V3发布了一种多功能且具有成本效益的大语言模型。•2025年1月20日,DeepSeek-R1和DeepSeek-R1-Zero发布了DeepSeek最有能力的复杂推理和解决问题的模型。此外,六个较小的“蒸馏”版本可在本地设备上操作。DeepSeek AI助手,聊天机器人,利用DeepSeek-V3,也可以使用。•2025年1月28日,DeepSeek Janus-Pro是一组用于图像生成的多模式的模型。
这项研究探讨了先进的人工智能系统DeepSeek的使用,在对Tai Chi和气功的医学研究中,这两种植根于传统中医(TCM)的古老实践。DeepSeek的任务是识别和讨论Tai Chi或气功已应用于各种疾病和疾病的治疗案例的案例。第一个任务侧重于Baduanjin,Baduanjin是医学研究中研究最广泛的气功运动,在100多项研究中已被研究为补充治疗。DeepSeek发表了一篇井井有条的论文,有效地总结了对Baduanjin的先前研究。但是,它提供的参考文献完全不准确,因为DeepSeek无法访问专用数据库,并且无法产生可靠的引用。
我们已经谈到了AI在三波中展开的影响:基础架构,软件应用程序和业务增长。假设DeepSeek可以按照广告宣传(即更快,更有效,更少的筹码)提供,我们认为下降成本会增加对AI工具的需求,并将AI推向更多的应用和最终市场。公司在AI“选择和铁锹”上花费的钱越少,盈利的公司将购买和部署包括主要的云公司。利基,较小的,服务不足的部门有可能在以前没有的情况下产生正投资回报率。我们还看到了在边缘加速AI的高潜力(想想智能手机,自动系统,包括移动性)。最后,期望资金从大而明显的流动(例如nvidia)是那些以前被认为落后但有可能受到AI优势的人(例如,苹果)和较小的创新竞争对手。仍然有许多未知数,包括实际训练了多少芯片。
Jeehaan Algaraady Mohammad Mahyoob Albuhairy Taiz大学,也门Taibah大学,沙特阿拉伯摘要摘要该研究通过涵盖大型语言模型(LLM)DeepSeek的用户印象,其中包含双重分析框架和主题分析。该研究旨在找到用户响应的主要情绪和重复的主题。双焦点方法通过包括情感和主题来增强对用户满意度,关注点和期望的看法。使用基于规则的Vader情感分析和主题评估的混合方法方法用于分析用户反馈,以阐明平台特定的优势和系统性挑战。的结果表明,DeepSeek被用户(+0.80的总体情感)以及可访问性的高分(+0.93)和智能与推理(+0.88)认为是高度积极的。尽管如此,新兴的批评围绕其审查制度和内容政策(-0.20)。用户通过免费访问来鼓掌分析精度,但批评接口导航问题。主题分析将DeepSeek指定为与分析驱动的用户的富裕,同时强调了其高度顽强的针对特定领域问题的能力。但是,跨切割挑战包括延迟,稳定性以及内容审核与用户自主权之间的固有张力。AI评估框架是通过添加计算情绪工具和定性看法的方法来提出的。这些发现的直觉可以更好地了解用户体验,并对当前的发展和DeepSeek的实际可用性产生了深远的影响。功能专业与用户期望之间的关系将AI平台的竞争力与DeepSeek(视为强大的,免费的分析工具)相同,同时发出可能的战略增强领域。
近年来,人工智能(AI)已成为各个领域的强大工具,生物信息学是其表现出变革性潜力的最杰出领域之一。生物信息学涉及大规模的生物学数据分析,包括基因组序列,蛋白质结构和临床数据。使用机器学习(ML),深度学习(DL)和自然语言处理(NLP)技术在理解复杂的生物学现象方面加速了进展,而在这项革命的最前沿,是OpenAI开发的大型语言模型。chatgpt建立在GPT(生成预审预测的变压器)等尖端神经网络体系结构上,在文本生成,数据解释甚至对话交流方面都表现出了非凡的功能。其在生物信息学中的实施可以导致更快,更有效的研究和更有效的临床决策。从协助基因组学到改善医学教育和增强药物发现,Chatgpt正在改变生物信息学家和医疗保健专业人员处理复杂问题的方式。但是,与任何技术进步一样,需要考虑的挑战。这些包括数据隐私问题,AI-I-Intent的道德含义以及AI模型在临床决策中的可靠性。本手稿旨在探索生物信息学中Chatgpt的潜力和局限性,从而概述其应用,道德考虑以及AI在生物医学科学中的未来方向。
出版日期:2025/02/21摘要:人工智能的快速发展(AI)导致了正在改变各种行业的复杂语言模型的发展。其中,由于其在自然语言处理(NLP),机器学习(ML)(ML)及其在不同领域的应用,OpenAI的Chatgpt和DeepSeek的AI模型由于它们在自然语言处理(NLP)中的能力而引起了极大的关注。本文介绍了Chatgpt和DeepSeek之间的全面比较,重点是其建筑差异,性能指标,应用程序和潜在的未来方向。该研究基于对相关文档的文献综述,包括技术论文,用户指南和行业报告。调查结果表明,尽管两种模型在NLP任务中都表现出色,但它们的基础体系结构,培训方法和特定用例有所不同。本文以该领域的未来研究和发展的建议结束。关键字:chatgpt,DeepSeek,生成AI,NLP,机器学习。如何引用:Rahul Vishwanath Dandage博士(2025)。对Chatgpt和DeepSeek的比较分析:功能,应用程序和未来方向Chatgpt&DeepSeek。国际创新科学与研究技术杂志,10(2),207-211。 https://doi.org/10.5281/zenodo.14899162
简介大型AI模型,例如DeepSeek和Chatgpt,在解决常见问题方面表现出了令人印象深刻的能力,通常与博士专家的级别相当。在解决这些类型的查询时,两个模型都会相似地执行,因此很难区分它们。这种情况类似于为博士研究生和高中生提供高中物理问题 - 两者都可以提供令人满意的答案。但是,当问题冒险进入更高级领域时,真正的区别就会显而易见。本文将评估模型在尖端研究问题上的表现,尤其是在可靠知识仍在不断发展的领域中。这样的例子是Crookes辐射仪的操作,这是理解布朗运动和相变的核心机制。Crookes辐射计(通常称为灯厂)由安装在低压保持在低压玻璃灯泡内的低摩擦主轴上的一组叶片组成,如下图所示。每个叶片在一侧涂成黑色,另一侧为白色。暴露于光线时,叶片随着黑色的侧面移开光源而旋转。旋转速度随光的强度增加,最佳性能的压力约为1 pa。
摘要新一代语言模型的出现因其卓越的理解和人类语言生成能力而彻底改变了自然语言处理(NLP)的领域。chatgpt成为一个基本模型,具有出色的优势。DeepSeek最近成为NLP的最新进步,在纯文本生成工作,语义分析和上下文依赖语言建模能力中表现出巨大的潜力。该研究调查并比较了DeepSeek和Chatgpt在评估主要应用于南亚阿拉伯语学习者的成人L2(第二语言)采集错误时的表现。使用此前提,我们旨在评估其在检测语言不准确性(形态学,语法,语义)和诊断L1(第一语言)的疗效方面的功效。方法包括对非本地阿拉伯语句子的错误分析,两个模型的比较评估以及对推理深度的对比评估。结果表明,DeepSeek在上下文驱动的错误检测(例如检测SOV单词订单转移时)的情况明显好得多,并且ChatGpt提出了更具主导性的相关反馈。但是,两者都需要微调提示来引入与语义/务实错误有关的反馈,例如缺少文章和方言不匹配。的贡献包括将AI工具集成到L2教育学的建议,强调对比度的演习和社会语言意识,以及针对L1靶向错误概况的培训AI的建议。这项研究将AI集成到针对成人L2学习者的可扩展解决方案的语言教学中,同时指出了模型中所需的改进。关键字:DeepSeek,Chatgpt,LLMS,母语影响(MTI),第二语言获取(SLA),AI辅助错误检测,对比语言学
近年来,人工智能将人工智能整合到医疗保健中,DeepSeek成为提高临床决策和医院运营效率的领先解决方案[1]。自2025年1月以来,该技术在中国第三纪念医院的广泛采用表示医疗人工智能(AI)应用的范式转移。上海在开拓DeepSeek的实施方面发挥了关键作用,领先的医院利用该技术用于不同的应用[2]。fudan大学附属的华山医院是最早在多个平台上测试DeepSeek 70B及其完整模型的医院之一,可确保在Intranet环境中维持数据安全性的同时确保最佳的成本效果配置。与此同时,Ruijin医院与华为合作推出了中国的第一个病理AI模型Ruizhi Pathology,该模型可自动化病理幻灯片分析,并具有3,000张幻灯片的日常处理能力。随着进一步的多模式集成,该系统将扩展以涵盖复杂的诊断方案。同样,上海第四人医院已经实施了局部的DeepSeek部署,将30,000多个典型病例和区域治疗指南的医学知识基础整合在一起,提高了病历的产生效率并为医生提供精确的诊断支持。上海第六人医院的金山分公司已将DeepSeek完全融入医师工作站,为疾病诊断提供实时援助,并降低了复杂病例中误诊的风险。
©2025 Protiviti Inc.均等的机会雇主M/F/残疾/退伍军人。PROTIVITI未获得许可或注册为公共会计师事务所,也没有就财务报表或提供认证服务发表意见。