该研究的目的是确定硫化镍薄膜的光学特性,即,来自化学浴沉积方法(CBD)的反射率,吸光度,透射率和能量带隙,与几个波长相关,并与各种紫外线(UV)范围相关,以确定其潜在的效果。使用硫酸盐,硫代硫酸钠和三乙醇胺(TEA)溶液,将镍硫化物薄膜化学沉积。基于Avantes单光束扫描UV-SpectroPhotopormeter,NIS薄膜的光学特性,这是光谱吸光度,反射率和透射率。发现NIS薄膜在所需的波长紫外线范围内具有很高的透明度,用于光疗的应用,低吸收系数可最大程度地减少能量损失和最大化增益,低反射可用于最大程度地减少反射损失,并最大程度地减少光耦合效率和1.98 EV的能量带差异,使其具有1.98 EV的evap em emememememecondoctor材料。nis薄膜中的薄膜被证明具有光疗中光放大器的所需特性特性。
本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]
量子点发光二极管(QD-LED)具有稳定的高官方,对于下一代显示至关重要。然而,无法控制的衰老,在储存期间效率最初增加(正衰老),但在延长的衰老(负衰老)(负衰老)时完全损失,这会阻碍进一步的设备开发。发现,基于纳米晶(NC)的电子传输层(ETL)的化学变化会导致正衰老,它们的结构漂移和形态导致瞬时改善的电荷注入平衡。使用放牧的小角度X射线散射,发现Znmgo NCS在衰老过程中进行了量身定量的成熟,改善了尺寸均匀性并创造了更平滑的能量景观。仅电子设备的测量结果显示,陷阱状态下降了7倍,表明Znmgo的表面钝化增强。这些见解,结合了ZnMGO表面结合的密度功能理论计算,激发了具有Al 2 O 3的原子层沉积(ALD)策略,以永久抑制表面陷阱并抑制NC的生长,从而有效地消除了老化诱导的效果损失。这种ALD工程的Znmgo ETL使得在30批LED中可重复可重复可重复的外部量子效应(EQE)为17%,在4500 cd m-2的初始亮度为4500 CD M-2的LED中,t 60 h 60 h,代表EQE的增长1.6倍,并且在运行式稳定性的稳定性上的提高了1.6倍。
金属增材制造(MAM)技术在制造与再制造行业中得到广泛应用,微观组织模拟逐渐凸显其重要性。传统的凝固微观组织模拟方法在MAM应用中都有其优缺点。本文建立了一种确定性凝固微观组织模型,即“侵入模型”,以避免传统方法的本质缺陷。该模型不模拟各个柱状晶粒的生长动力学或推导变量的场形式,而是关注相邻双晶之间的相互作用。在双晶系统中,晶界从热梯度方向的倾斜被理解为一个晶粒向另一个晶粒的瞬时侵入行为,而MAM形成过程中的竞争性晶粒生长行为则是双晶系统中所有侵入行为的总结。为了填补快速凝固理论的空白,利用人工神经网络(ANN)建立了快速定向凝固条件下各向异性生长效应的数据库。以采用线材送料定向能量沉积 (DED) 制备的具有完整树枝状柱状晶粒 (原始 β 晶粒) 的 Ti6Al4V 薄壁样品为基准,测试了新模拟模型的有效性。沿堆积方向重构的原始 β 晶粒的晶粒几何结构与模拟结果具有很好的一致性。在满足应用范围的情况下,该模型还可以应用于 MAM 的其他情况或与各种模型结合,以实现实时凝固晶体学特征预测。关键词:增材制造;微观结构;建模;凝固
摘要:果胶气凝胶,密度非常低(约0.1 g cm -3)和高比表面积(高达600 m 2 g -1),是出色的热绝缘材料,因为它们的导热率低于环境条件下的空气(0.025 w m -1 k -1 k -1)。然而,由于其内在亲水性,与水蒸气接触时果胶气凝胶塌陷,失去了超跨性能。在这项工作中,首先制作了果胶气凝胶,并研究了不同过程参数对材料结构和特性的影响。所有纯果胶气凝胶的密度低(0.04-0.11 g cm-1),高比表面积(308–567 m 2 g - 1)和非常低的热电导液(0.015-0.0.023 w m-1 k-1 k-1)。然后,使用不同的反应持续时间(2至24 h),通过甲基三甲氧基硅烷的化学蒸气沉积果胶疏水凝胶。通过在气候腔中进行调节(25℃,80%的相对湿度),记录了疏水性对材料特性的影响,尤其是对热导率的影响。疏水导致与整洁的果胶气凝剂相比,导热率的增加。mTMS沉积16小时有效地在潮湿的环境(接触角115°)和稳定材料特性(0.030 w m -1 k -1)和测试周期为8个月的测试周期中没有波动的材料(0.030 w m -1 k -1),有效地溶出了果胶气凝胶和稳定材料的稳定材料特性。
金属零件的定向能量沉积(DED)添加剂制造过程越来越流行,并且由于它们制造大尺寸的一部分的潜力而被广泛接受。由于过程物理学而获得的复杂热循环导致残留应力和失真的积累。但是,为了准确地对大零件的金属沉积传热进行建模,数值模型会导致不切实际的计算时间。在这项工作中,开发了具有安静/主动元件激活的3D瞬时元素模型,用于建模金属沉积传热过程。为了准确地模拟移动热源,戈德克的双椭圆形模型的实现是用足够小的模拟时间增量来实现的,从而使激光在每个增量过程中移动其半径的距离。考虑使用不同工艺参数制造的不锈钢316L的薄壁壁,用COMSOL 5.6多物理软件获得的数值结果通过在制造20层的底物上记录的实验温度数据成功验证。为了减少计算时间,实现了整个路径上的热源的拉长椭圆形热输入模型。已经发现,通过采取如此大的时间增量,数值模型会产生不准确的结果。因此,该轨道分为几个子轨道,每个子轨道都以一个模拟增量应用。另外,引入了校正因子,该校正因子进一步减少了伸长热源的计算误差。在这项工作中,进行了调查,以发现正确的模拟时间增量或子轨道大小,从而导致计算时间减少(5 - 10次),但仍会产生非常准确的结果(低于温度相对误差的10%)。最后,在发现正确的时间增量大小和校正因子值以减少计算时间产生准确结果的情况下,还建立了新的相关性。
图 1. 从四种不同样品中以不同摩尔比沉积的 Al x Ti 1-x N 膜获得的窄范围核心级光电子谱 a) Al 2p b) Ti 2p c) N 1s 和 d) O 1s。大多数样品中的碳贡献几乎低于检测限,因此省略了 C 1s 光谱。
摘要 :改进的露天空间原子层沉积 (SALD) 头用于在各种基底上制造复杂氧化物图案。共反应物保持在周围大气中,设计了一个由三个同心喷嘴和一个前体出口组成的简单注入头。可以轻松且可逆地修改金属前体出口的直径,从而可以直接形成具有不同横向尺寸的图案。成功证明了无掩模沉积均匀和同质的 TiO 2 和 ZrO 2 薄膜,横向分辨率从毫米到几百微米范围可调,同时将膜厚度保持在几纳米到几百纳米范围内,并在纳米级控制。这种局部 SALD 方法称为 LOCALD,还可以在结构化基底上进行层堆叠和沉积。
摘要:聚对二甲苯 (PC) 因其高机械强度和生物相容性等优异性能在过去几年中引起了极大的关注。当用作柔性基板并与高κ电介质如氧化铝 (Al 2 O 3 ) 结合时,Al 2 O 3 /PC 堆栈在生物医学微系统和微电子等领域的各种应用中变得非常引人注目。对于后者,尤其需要氧化物的原子层沉积,因为它可以沉积高质量和纳米级氧化物厚度。在本文中,实现了在 15 μ m 厚的 PC 层上进行 Al 2 O 3 的原子层沉积 (ALD) 和电子束物理气相沉积 (EBPVD),并通过 X 射线光电子能谱结合原子力显微镜研究它们对 Al 2 O 3 /PC 所得堆栈的影响。我们发现,基于 ALD 的 Al 2 O 3 /PC 叠层可产生纳米柱状表面,而基于 EBPVD 的 Al 2 O 3 /PC 叠层可产生预期的光滑表面。在这两种情况下,Al 2 O 3 /PC 叠层都可以轻松地从可重复使用的 SiO 2 基板上剥离,从而产生柔性 Al 2 O 3 /PC 薄膜。这些制造工艺经济、产量高,适合大规模生产。尽管 ALD 在半导体行业特别受欢迎,但我们发现 EBPVD 更适合实现用于微电子和纳米电子的 Al 2 O 3 /PC 柔性基板。
IN718 是一种在航空航天业中很受欢迎的镍基高温合金,具有良好的高温力学/耐腐蚀性能。使用 IN718 的激光金属沉积 (LMD) 修复已被广泛探索,但很少有研究深入研究其摩擦学方面。本研究检查了后处理的 IN718 涂层,模拟了快速修复,研究了它们的高温摩擦学行为。样品在不同负载和温度下进行了摩擦学测试。结果表明,扫描策略不会影响磨损行为。在高温下,接触区会形成釉层,根据其均匀性影响润滑和表面保护。尽管它具有有利的润滑能力,但在 400°C 和 50 N 力下,氧化碎片层缺乏机械稳定性。与环境条件相比,IN718 LMD 修复表现出增强的高温耐磨性,这归因于釉层。