尽管最近的研究通过深度学习技术突破了极限,但从 3D 点云中进行物体检测仍然是一项具有挑战性的任务。由于严重的空间遮挡和点密度随到传感器距离的固有变化,同一物体在点云数据中的外观会有很大变化。因此,设计针对这种外观变化的鲁棒特征表示是 3D 物体检测方法的关键问题。在本文中,我们创新地提出了一种类似域自适应的方法来增强特征表示的鲁棒性。更具体地说,我们弥合了特征来自真实场景的感知域和特征从由富含详细信息的非遮挡点云组成的增强场景中提取的概念域之间的差距。这种领域自适应方法模仿了人脑在进行物体感知时的功能。大量实验表明,我们简单而有效的方法从根本上提高了 3D 点云物体检测的性能并取得了最先进的结果。
当前的视频异常检测(VAD)方法本质上仅限于封闭设置的设置,并且可能在开放世界应用程序中遇到困难,在培训期间,测试数据中可能存在异常类别。最近的一些研究试图解决更现实的开放式VAD,该研究旨在解散视为异常和正常视频的看不见异常。但是,尽管这种能力对于构建更明智的视频监视系统至关重要,但这种设置着重于预测框架异常得分,没有识别异常类别的能力。本文进一步迈出了一步,并探讨了开放词汇视频异常检测(OVVAD),我们的目的是利用预训练的大型模型来检测和cate-可见和看不见的异常。为此,我们提出了一个模型,该模型将OVVAD分解为两个相互构成的任务 - 类不足的检测和特定于类的分类 - 并共同优化了这两个任务。特别是,我们设计了一个语义知识注入模块,以从大语言模型中引入语义知识以进行检测任务,并设计一种新型的异常合成模块,以在大型视觉生成模型的帮助下生成伪异常视频,以实现分类任务。这些语义知识和综合异常大大扩展了我们模型在检测和分类各种可见和看不见的异常方面的能力。对三个广泛使用的基准测试的实验实验实现了我们的模型在OVVAD任务上实现了最新的性能。
大规模视觉语言预训练模型的最新进展已在自然图像领域中的零样本/少样本异常检测方面取得了重大进展。然而,自然图像和医学图像之间巨大的领域差异限制了这些方法在医学异常检测中的有效性。本文介绍了一种新颖的轻量级多级自适应和比较框架,以重新利用 CLIP 模型进行医学异常检测。我们的方法将多个残差适配器集成到预训练的视觉编码器中,从而实现不同级别视觉特征的逐步增强。这种多级自适应由多级、逐像素的视觉语言特征对齐损失函数引导,将模型的重点从自然图像中的对象语义重新校准到医学图像中的异常识别。调整后的特征在各种医学数据类型中表现出更好的泛化能力,即使在模型在训练期间遇到看不见的医学模态和解剖区域的零样本场景中也是如此。我们在医学异常检测基准上进行的实验表明,我们的方法明显优于当前最先进的模型,在零样本和少样本设置下,异常分类的平均 AUC 改进分别为 6.24% 和 7.33%,异常分割的平均 AUC 改进分别为 2.03% 和 2.37%。源代码可从以下网址获取:https://github.com/MediaBrain-SJTU/MVFA-AD
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、意大利帕维亚大学的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
事件相机具有高时间分辨率、高动态范围、低功耗和高像素带宽等特点,为特殊环境中的物体检测提供了独特的功能。尽管有这些优势,事件数据固有的稀疏性和异步性对现有的物体检测算法提出了挑战。脉冲神经网络 (SNN) 受到人脑编码和处理信息方式的启发,为这些困难提供了潜在的解决方案。然而,在当前的实现中,它们在使用事件相机进行物体检测方面的性能受到限制。在本文中,我们提出了脉冲融合物体检测器 (SFOD),一种基于 SNN 的简单有效的物体检测方法。具体而言,我们设计了一个脉冲融合模块,首次实现了应用于事件相机的 SNN 中不同尺度特征图的融合。此外,通过整合我们在 NCAR 数据集上对主干网络进行预训练期间进行的分析和实验,我们深入研究了脉冲解码策略和损失函数对模型性能的影响。从而,我们建立了基于 SNN 的当前最佳分类结果,在 NCAR 数据集上实现了 93.7% 的准确率。在 GEN1 检测数据集上的实验结果表明,SFOD 实现了 32.1% 的当前最佳 mAP,优于现有的基于 SNN 的方法。我们的研究不仅强调了 SNN 在事件摄像机物体检测中的潜力,而且推动了 SNN 的发展。代码可在 https://github.com/yimeng-fan/SFOD 获得。
与基于卷积神经网络(CNN)相比,我们研究了基于变压器的行人检测模型较低性能的原因。CNN模型会产生密集的行人建议,单独完善每个建议,然后对其进行非最大抑制(NMS)的跟进,以产生稀疏的预测。在争论中,变压器模型每个地面真相(GT)行人盒选择一个建议,然后从中选择了正面的正态。所有其他建议,其中许多与选定的建议高度相似,都通过了负梯度。尽管这导致了稀疏的预测,从而消除了NM的需求,但在许多类似的建议中,任意选择,有效的训练和较低的行人检测准确性。为了减轻问题,我们建议基于Min-Cost-Flow的配方,而不是常用的Kuhn-Munkres匹配算法,并纳入了诸如每个地面真相盒的约束,并且与一个建议的提案相匹配,并且许多同样好的建议可以与单个地面真相盒相匹配。我们提出了基于匹配算法的第一个基于变压器的行人检测模型。广泛的实验表明,我们的方法达到了3个失误率(较低)3。7 /17。4 /21。8/8。3/2。0在Eurocity / tju-traffic / tju-校园 /城市专家 /加州理工学院数据集中,而4个。7/18。7/24。8/8。5/3。 1通过当前的sota。 代码可从https://ajayshastry08.github.io/flow_ matcher 获得。5/3。1通过当前的sota。代码可从https://ajayshastry08.github.io/flow_ matcher
现有的建筑库存翻新是建筑自动化的关键方面。例如,准确地确定连接器的位置对于在建筑物外部的预制面板进行安装至关重要。,传统的测量方法,例如使用总站的使用(请参阅[1])有几个限制,包括耗时,需要熟练的技术人员等。为了应对这些挑战并利用自动化的优势,将计算机视觉技术与视觉基准系统的集成被认为是可行的。在本文中,我们提出了与机器学习集成以解决上述问题的精制APRILTAG(请参见[2])检测管道。图1显示了其架构。我们将首先讨论Apriltag本地化准确性的研究差距。然后,我们将详细介绍管道的组合。第4节中的实验表明,我们的精制管道的精度非常好。这项研究是Ensnare项目[3]的一部分。