量子混沌是指在量子领域发现的经典混沌特征。最近,人们普遍将超时序相关器 (OTOC) 的指数行为等同于量子混沌。在某些系统中,OTOC 指数增长与经典极限下的混沌之间的量子-经典对应关系确实已在理论上得到证实,并且有多个项目正在通过实验进行同样的验证。特别是具有规则和混沌状态的 Dicke 模型,目前正在通过捕获离子的实验进行深入研究。然而,我们表明,对于实验可获得的参数,当 Dicke 模型处于规则状态时,OTOC 也可以呈指数增长。Lipkin-Meshkov-Glick 模型也是如此,它是可积的,也可以通过实验实现。这些情况下的指数行为是由于不稳定的驻点,而不是混沌。
1。C. Schmid,N。Kiesel,W。Laskowski,E。Solano,G。Tóth,M。Zukowski,M。Zukowski和H. Weinfurter,《对称的四型Photon dicke State的纠缠》,第113页,书中的第113章:量子通信和安全性:M. Zukowski,S。Zukowski,S。Boolin和J. kowalik(Eds.kowalik(Eds)),北约高级研究研讨会论文集,关于量子通信和安全性,波兰,吉丹斯克,2006年9月10日至13日,荷兰ios出版社,2007年,ISBN 978-1-58603-749-9。
Bell状态[1-7],Dicke状态[6,8,9]和自旋相干状态[10-23]在量子计算中起着核心作用。钟状状态是完全纠缠的,而在Quanth中,旋转相干状态(也称为原子共同植物Blochochcoherentstates)却是“大多数clas-Sical-sical State”。旋转汉密尔顿经营者,该操作员承认钟声是钟声,而迪克则是特征向量。我们还展示了如何从ℂ2和kronecker产品中的自旋相干状态构建钟状状态。比较了这些状态的纠缠量。对Husimi分布进行了评估和讨论。得出了钟形状态和旋转相干状态之间的距离,并表明距离不能为0。旋转矩阵s 1和s 2的不确定性关系,贝尔状态和旋转相干状态被得出和组合。此外,我们看一下钟状态和旋转相干状态的铃铛不等式。我们发现自旋相干指出,根据参数值可能会违反铃铛不等式。用自旋矩阵和旋转的雷利矩阵表示钟形矩阵
我们提出了一种基于分裂自旋系综中类数相不确定关系来检测二分纠缠的方法。首先,我们推导出一个不确定关系,该关系在自旋系统中起到数相不确定性的作用。重要的是,该关系具有明确定义且易于测量的量,并且不需要假设无限维系统。基于这种不确定关系,我们展示了如何检测许多自旋 1/2 粒子的非极化 Dicke 态中的二分纠缠。将粒子分成两个子系综,然后在这两个部分上进行局部集体角动量测量。首先,我们提出一个二分爱因斯坦-波多尔斯基-罗森 (EPR) 转向标准。然后,我们提出一种可以在这种系统中检测二分纠缠的纠缠条件。通过将这些标准应用于 K. Lange 等人给出的最新实验,我们证明了这些标准的实用性。 [Science 360, 416 (2018)] 在冷原子的玻色-爱因斯坦凝聚态中实现狄克态,其中两个子集合在空间上彼此分离。如果考虑分裂自旋压缩态,我们的方法也同样有效。我们全面展示了如何处理实验缺陷,例如包括分区噪声在内的非零粒子数方差,以及尽管理想情况下 BEC 占据单一空间模式,但实际上其他空间模式的数量无法完全抑制这一事实。
摘要。我们证明了整个欧几里得空间上(各向异性的)舒宾仪的定量光谱不平等,因此,从相关的光谱子空间中的功能与有限的能量间隔相关的函数将其在整个空间上与合适子集的L 2-纳米在整个空间上的l 2-相关。我们估计值的一个特定特征是,将这些L 2 -norms相关的常数在整个空间的相应子集的几何参数中非常明确,这可能会在实质性上稀疏,甚至可能具有有限的度量。这扩展了J. Martin最近获得的结果,在谐波振荡器的特殊情况下,A。Dicke,I。Veselić和第二作者获得了结果。我们将结果应用于相关的抛物线方程的无控制性,以及与作用于R d×T d的(变性)Baouendi-Grushin算子相关的结果。
菌根真菌和细菌,可改善植物营养循环和土壤结构。在A. Varma和F. Buscot中(编辑。),土壤中的微生物:创世纪和功能中的作用第3卷(pp。195–212)。Springer。 BarragánFonseca,K.,Greenberg,L.,Gort,G.,Dicke,M。和Van Loon,J。 (2023)。 用昆虫的巨型修改土壤可改善胸前NIGRA植物的草食动物含量,授粉媒介吸引力和种子产量。 农业,生态系统与环境,342,108219。 Bassene,H.,Fenollar,F。和Mediannikov,O。 (2018)。 对蚊子传播疾病的生物控制:基于沃尔巴奇的IVM框架中基于Wolbachia的交流的潜力。 热带医学杂志,2018,1470459。 Beard,C。B.,Mason,P。W.,Aksoy,S.,Tesh,R。B.和Richards,F。F.(1992)。Springer。BarragánFonseca,K.,Greenberg,L.,Gort,G.,Dicke,M。和Van Loon,J。 (2023)。 用昆虫的巨型修改土壤可改善胸前NIGRA植物的草食动物含量,授粉媒介吸引力和种子产量。 农业,生态系统与环境,342,108219。 Bassene,H.,Fenollar,F。和Mediannikov,O。 (2018)。 对蚊子传播疾病的生物控制:基于沃尔巴奇的IVM框架中基于Wolbachia的交流的潜力。 热带医学杂志,2018,1470459。 Beard,C。B.,Mason,P。W.,Aksoy,S.,Tesh,R。B.和Richards,F。F.(1992)。BarragánFonseca,K.,Greenberg,L.,Gort,G.,Dicke,M。和Van Loon,J。(2023)。用昆虫的巨型修改土壤可改善胸前NIGRA植物的草食动物含量,授粉媒介吸引力和种子产量。农业,生态系统与环境,342,108219。Bassene,H.,Fenollar,F。和Mediannikov,O。(2018)。对蚊子传播疾病的生物控制:基于沃尔巴奇的IVM框架中基于Wolbachia的交流的潜力。热带医学杂志,2018,1470459。Beard,C。B.,Mason,P。W.,Aksoy,S.,Tesh,R。B.和Richards,F。F.(1992)。Beard,C。B.,Mason,P。W.,Aksoy,S.,Tesh,R。B.和Richards,F。F.(1992)。
研究光介导的过程的追求驱动了能够产生X射线辐射脉冲的设施的发展(Ponseca等人。,2017年; Kranz&Wachtler,2021年; Chergui&Collet,2017年; Milne等。,2014年)。激光驱动的来源可以在各种能量中可靠地产生这种辐射,并将紧凑型设置的好处和高水平的整合性在多功能实验室中以负担得起的成本(与其他大型设施相比)相结合。对于超快泵 - 探针实验,光束生成的全光方法在两个或更多光束之间提供了出色的同步。这样的设施具有例如高级形状的泵脉冲(Assion等,1998;布鲁格曼等人。,2006年)以及不同波长范围中探针的内在性能,例如可见的,Terahertz和X射线,使用相同的泵。此处描述的来源安装在模块化的X射线光谱端站内,有可能促使使用多种互补方法进行全面研究[见De Roche等。(2003),Naumova等。 (2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2003),Naumova等。(2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2018),Dicke等。(2018),Kunnus等。(2020)和Kjaer等。(2019)示例]。激光驱动的等离子体X射线源(PXS)(Mallozzi等,1974年; Turcu&Dance,1999年; Benesch等。,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。,2007年; Korn等。,2002年; Zamponi等。,2009年; Uhlig等。,2013年; Weisshaupt等人。,2014年; Afshari等。,2020)。这会导致表面原子和血浆在陡峭的梯度处的电离(Fullagar,Harbst等人。,2007年; Chen等。,2001年; Brunel,
空腔量子电动力学为设计和控制光 - 二聚体相互作用提供了理想的平台。在这项工作中,我们研究了谐波陷阱中许多粒子系统中的共同现象,该系统耦合到同型腔腔吸尘器。系统夫妻通过其质量中心和集体极化状态聚集到腔场。腔场介导对成对的长距离相互作用并增强颗粒的有效质量。这导致在物质基态密度中的定位增强,当光和物质在共振上时具有最大值,并以粒子数表现出类似dicke的集体行为。轻度 - 物质相互作用还修改了极化系统的光子性能,因为基态填充了束光子。此外,还表明,磁磁性A 2项对于系统的稳定性是必需的,否则是较高的基态不稳定性。我们证明,通过外部磁场并通过监测Landau-Zener的过渡概率,极化人群的相干转移是可能的。
原始文件(1987 年 6 月)由现场气象数据工作组准备,该工作组成立于 1985 年 12 月,由 EPA-OAQPS 的 Roger Brode 担任主席。其成员及其贡献如下:Edward Bennett,纽约州 DEC,第 6.6 节;Roger Brode,EPA-OAQPS,第 1.0、2.0 和 4.0 节;James Dicke,EPA-OAQPS,第 5.2 节;Robert Eskridge,EPA-ASRL,第 6.2 和 6.3 节;Mark Garrison,EPA-Region III,第 3.2 和 9.0 节;John Irwin,EPA-ASRL,第 6.1 和 6.4 节;Michael Koerber,EPA-Region V,第 3.1 和 3.3 节;Thomas Lockhart,气象标准研究所,第 8.0 节; Timothy 方法,EPA-Region V,第 3.4 节;Stephen Perkins,EPA-Region I,第 6.5 和 7.0 节;以及 Robert Wilson,EPA-Region 10,第 5.1 和 8.6 节以及第 8.1、8.2 和 8.5 节的部分内容。通过内部审查和讨论,所有工作组成员都为整个文件的形成做出了贡献。工作组希望感谢 EPA 内部和外部为该文件提供技术审查意见的人员所付出的时间和努力。工作组还感谢 Joseph A. Tikvart(EPA-OAQPS)的支持和有益指导。