标题:等离子体-半导体界面处的电离波 名字:戴维 姓名:PAI 实验室:等离子体物理实验室 (LPP) 电子邮件:david.pai@lpp.polytechnique.fr 网页:https://www.lpp.polytechnique.fr/-David-Pai- 研究领域: 主要领域:激光和等离子体物理 次要领域:材料科学 方法:大气压等离子体、表面等离子体、纳秒放电、等离子体诊断(例如光发射光谱、电场诱导的二次谐波产生、汤姆逊散射)、材料化学诊断(例如拉曼和光致发光光谱) 博士课程主题:等离子体-表面相互作用是许多类型等离子体物理学的关键要素。对于非平衡等离子体,其中电子的温度比原子和分子的温度高得多,一种常见的现象是表面电离波 (IW)。使用复合材料代替块体金属/电介质作为电极或传播表面可能会产生新的相互作用。特别是,与半导体相关的光电效应可以使基于微电子中常用的绝缘体上硅 (SOI) 技术的 IW 沿表面传播均匀化。我们的假设是气相和电子空穴 IW 沿 SOI 界面相邻地共同传播。
物理学是制作所有工程科学的科学的一个基本方面。物理学的基本概念为开发工程分支和技术提供了道路。从激光微手术到电视的所有现代技术进步,从计算机到手机,从遥控玩具到太空车辆,直接遵循物理原理。因此,工程课程的教学大纲包括物理学作为必不可少的主题。工程课程中的物理大纲主要分为两个部分,即根据印度大学和工程学院的课程要求,应用物理与工程物理学。应用物理课程的范围已广泛扩展到工程学科和新兴技术的各个领域。应用物理学非常庞大,因此重要主题已入围并包括在手册 /材料中。当前应用物理的手册/材料分为五个单位,即单元1涉及激光和光纤启示,单元2处理量子力学,单元3处理电子材料,单元4处理半导体物理学,单元5处理介电和材料的磁性。
高频信号传输,低介电常数(D K)和低介电损耗因子(D F)的替代品以取代传统的二氧化硅材料。4 - 6聚酰亚胺(PI)通常被评为合适的候选者,因为其低分子极化性以及出色的热,机械和化学耐药性特征,并且在电信和微电子工业中表现出了理想的前景。7当前,低二型聚合物材料的结构和组成设计主要集中于结构修饰,改进材料制造过程和复合修饰。常规PI的固有介电常数位于约3.5中,但是,通常需要较低的值以最大程度地减少超大尺度集成电路,高频通信天线基板和毫米波雷达的层间介电信号传输的功率耗散和延迟。8 - 11通过减少主链上酰亚胺基团之间的极化,已经研究了许多方法来减少介电常数和PI的介电损失。12 PI聚合物的分子结构在其介电特性中起主要作用。固有偶极矩和
纳米孔子是由具有二阶非线性的低损失介电介质制造的,已成为纳米级非线性频率转换的广泛平台。然而,这项研究中的持续挑战是上流光的复杂远端极化状态,这是许多应用中的限制因素。将非常需要在所有传播方向上产生均匀的远场极化状态,以控制沿光轴真正的极化,并同时通过纯粹修改激发极化来沿Poincaré球体的整个周长调整极化。在这里,理论上提出并实验证明了将所有这些特性结合的非线性纳米烯象。首先,将带有所需远端极化的纳米孔子的诱导多极含量的分析模型得出。基于此,非线性介电纳米架旨在实现具有高纯且可调的远距离极化状态的总和频率生成(SFG)。在实验中,(110) - 取向的IIII-V半导体炮制造的纳米孔子在具有单独控制的激发梁的SFG方案中激发了(110) - 方向。通过将背部 - 焦距测量结果与Stokes极化法相结合,可以证明高度均匀且可调的远端极化状态。
引言:液体电介质和绝缘聚合物是柔性电子器件的组成部分[1]–[4]。此外,微流体与微电子技术的集成为高频电子系统开辟了新的研究和开发领域。例如,过去十年来,许多研究都展示了通过流体调节天线输出频率、辐射方向图和极化的方法[5]–[14]。人们还利用流体研究了微波元件的频率调谐,包括滤波器[15],[16]、移相器[17],[18]、功率分配器[19],[20]和振荡器[21]。尽管前文提到流体电子学方面的研究成果日益增多,但关于用于实现这些系统的各种电介质流体和聚合物化合物的介电常数的公开数据却非常有限。在缺乏此类数据的情况下,研究人员通常依靠在某一频率下收集的介电常数数据来近似其设备在其他频率下的响应。直到最近,才开始出现关于感兴趣的介电流体宽带响应的介电光谱研究[22]。在本文中,我们报告了宽带复介电常数
FOR PG 科目代码:PH-xxx 课程名称:能量收集和存储的先进材料 L-T-P:3-0-0 学分:3 科目领域:STAR 课程大纲:能量转换过程的基础知识(热电、压电、光伏、水力发电等。),能量收集和存储材料,包括合成、特性。水力电池、电介质、量子点、钙钛矿太阳能电池和超级电容器、电池。纳米结构在增强储能性能中的作用。柔性和可穿戴能源设备 学科代码:PH-xxx 课程名称:功能材料 L-T-P:3-0-0 学分:3 学科领域:STAR 课程大纲:功能材料是具有一种或多种特性的材料,这些特性可以通过外部刺激(温度、电/磁场等)以受控方式显着改变。因此可应用于各种技术设备,例如存储器、显示器和电信。本课程旨在让学生详细了解一系列功能材料,包括磁性和超导材料、铁电材料、半导体材料和二维材料。这些是一类迅速崛起的材料,具有新颖的物理特性,可应用于催化、电子设备、执行器和传感器等广泛领域。
摘要:我们对硬件神经网络(NN)进行了不同的仿真实验,以分析不同数据集在网络准确性中不同NN体系结构的突触数量的作用。一项在4 kbit 1T1R reram阵列上的技术,其中采用了基于H FO 2电介质的电阻开关设备作为参考。在我们的研究中,考虑了完全致密的(FDNN)和卷积神经网络(CNN),在这种情况下,在突触的数量和隐藏层神经元的数量方面,NN的大小各不相同。cnns效果更好。如果包括量化的突触权重,我们观察到随着突触的数量减少,NN的精度显着降低。在这方面,必须实现突触数量与NN准确性之间的权衡。因此,CNN架构必须经过精心设计;特别是,注意到不同的数据集根据其复杂性需要特定的架构以取得良好的结果。表明,由于可以在NN硬件实现的优化中更改的变量数量,因此必须在每种情况下都在突触重量级别,NN体系结构等方面使用特定的解决方案。
物理学是制作所有工程科学的科学的一个基本方面。物理学的基本概念为开发工程分支和技术提供了道路。从激光微手术到电视的所有现代技术进步,从计算机到手机,从遥控玩具到太空车辆,直接遵循物理原理。因此,工程课程的教学大纲包括物理学作为必不可少的主题。工程课程中的物理大纲主要分为两个部分,即根据印度大学和工程学院的课程要求,应用物理与工程物理学。应用物理课程的范围已广泛扩展到工程学科和新兴技术的各个领域。应用物理学非常庞大,因此重要主题已入围并包括在手册 /材料中。当前应用物理的手册材料分为五个单位,即单元1涉及激光和光纤启示,单元2处理量子力学和固体的免费电子理论,单元3处理半导体物理学,UNIT-4处理介电,磁性和超导导向材料,与N Ano Science&Nano Technology的UNIT-5交易。
矿物油的电气和环境缺点,传统上用作电力系统中的绝缘液,导致寻找替代品。由蔬菜种子产生的天然酯是最重要的替代品之一。具有较高介电强度的天然酯可以满足超高的电压变压器设计要求。此外,它们可以应对由变压器油具有生物降解性引起的环境问题。这项研究首先将天然酯与其他透射式油进行比较,并解释了天然酯为何脱颖而出。自然酯的基本特性是根据优势和缺点定义的,并且电源系统应用被例证。在文献中广泛使用的纳米颗粒添加的纳米流体的酯和合成,用于改善天然酯的电和热性能,并通过实验应用呈现。天然酯可以在酯化过程中具有更好的氧化稳定性。基于天然酯的纳米流体的AC,DC和Lightning Impulse(LI)断裂电压也平均增强了10%。使用天然酯的这种变电站和实验应用表明,这些环保油可以在许多电力系统设备(尤其是变压器)中提供绝缘要求。关键字:变压器油,动力变压器,液体介电
锗(GE)表现出较高的载流子迁移率和较低的加工温度的优势。这些使GE成为超老式CMOS逻辑设备和薄膜晶体管(TFTS)的应用,作为三维集成电路中的顶层[1-3]。在过去的几年中,针对GE P通道金属 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 局部效果晶体管(MOSFET)的表面钝化,栅极介电和通道工程的巨大努力已有助于显着改善设备的电气性能。但对于GE N-通道MOSFET,低有效载体迁移率(μEFF)极大地限制了晶体管的性能。各种表面钝化技术,包括SI钝化[1],氧化后血浆[4]和INALP钝化[5]和几种高κ电介质,包括HFO 2,ZRO 2,ZRO 2 [6-8],Y 2 O 3 [9]和LA 2 O 3 [10],已在GE NMosfets中探索。证明,与GE通道集成的ZRO 2电介质可以提供强大的界面,因为GEO 2界面层可以反应并与ZRO 2层反应[7]。在GE P通道晶体管中有一个不错的孔μEFF[6-8],而其对应物仍有很大的改善电子μEFF。
