摘要抗共振纤维(ARF)表面等离子体共振(SPR)双参数传感器设计用于同时检测磁场和温度。传感器中纤维芯的两侧分别充满金纳米线和金介质,以激发SPR。ARF中的中心气孔充满了对磁场和温度响应的磁性液体(MF),并且通过将聚二甲基硅氧烷(PDMS)放在金纳米线外面来进行温度测量。通过有限元方法进行分析显示,当磁场在50至130 OE之间时,最大的第一和第二共振峰敏感性分别为300 pm/ oe和500 pm/ oe。在20–30°C的温度范围内,第二共振峰的最大波长灵敏度为10.8 nm/°C。通过构建和解调传感矩阵,克服了由于磁氢光光学效应而引起的温度交叉敏化。在工业自动化,军事应用和地质探索等领域,这种新的传感器设计非常有前途。
所有介电材料都具有电活性,即能够在施加的电场作用下改变其尺寸或形状。(Dang et al, 2012) 电活性聚合物 (EAP) 及其聚合物纳米复合材料由于其低模量、高应变能力、易于低成本加工和可定制的机电耦合特性,特别适用于从致动器、传感器到发电机等应用。通常,EAP 诱导的应变能力比刚性和易碎的电活性陶瓷高两个数量级。与形状记忆合金和聚合物相比,它们显示出更快的响应速度。(Yuan et al, 2019) 由于这些特性,EAP 可以与生物肌肉相媲美,并长期被称为“人造肌肉”。(Bar-Cohen, 2002) 社区甚至发布了一项挑战,要求开发一种由人造肌肉驱动的机械臂,以赢得与人类对手的腕力比赛。除了致动器之外,EAP 还显示出其在传感应用中的潜力,例如触觉传感、血压和脉搏率监测以及化学传感。(Wang 等人,2016 年)此外,EAP 甚至可以作为发电机中的关键活性材料。随着便携式电子设备(例如无线传感器和发射器)和无线微系统的功能不断增加,其能量需求也急剧增加。而电池的使用由于环境问题和有限的使用寿命而很麻烦,因此需要定期更换。解决这一挑战的明显解决方案是开发完全依赖从人体或周围环境中获取的能量的自供电系统。EAP 已被证明能够获取振动机械能(Lallart 等人,2012 年)和海浪能(Jean 等人,2012 年)。EAP 可以根据其所属的晶体类别(即中心对称或非中心对称)分为不同的亚组。当具有对称中心的介电材料受到电场刺激时,对称性将抵消阳离子和阴离子的运动,不会导致晶体的净变形。然而,化学键不是谐波的,键的非谐性会引起二阶效应,导致晶格的净变形很小。(Vijaya,2013)发现变形与电场的平方成正比,与电场的方向无关。这种效应称为电致伸缩。由于这种非谐波效应存在于所有介电体中,因此所有介电体都是电致伸缩材料。
基于 Al/AlO x /Al 约瑟夫森结的超导量子比特是通用量子计算机物理实现最有希望的候选者之一。由于可扩展性和与最先进的纳米电子工艺的兼容性,人们可以在单个硅芯片上制造数百个量子比特。然而,由非晶电介质中的双层系统(包括隧道势垒 AlO x )引起的这些系统中的退相干是主要问题之一。我们报告了一种约瑟夫森结热退火工艺开发,用于结晶非晶势垒氧化物(AlO x )。获得了热退火参数对室温电阻的依赖关系。所开发的方法不仅可以将约瑟夫森结电阻提高 175%,还可以将其降低 60%,R n 的精度为 10%。最后,提出了关于隧道势垒结构修改的理论假设。建议的热退火方法可用于为广泛使用的固定频率 transmon 量子比特形成稳定且可重复的隧道屏障和可扩展的频率调整。
本研究中的 TFET 为浮体 SOI 器件,因此应首先评估执行电荷泵浦测量的可行性 [19]。当用具有恒定基极电平和幅度的方波脉冲栅极时,漏极和源极保持在相同的电位,该电位扫过 0 至 1.5 V 的适当范围,以激活 Si/栅极电介质界面处的生成-复合过程。发现在 P+ 源极接触处测得的电流与栅极脉冲的频率成正比,证明了电荷泵浦装置的正确性 [20],[21]。因此,即使我们的基于 SOI 的 TFET 中没有体接触,由于源极和漏极具有相反的掺杂类型,我们仍然可以执行电荷泵浦测量来评估 N it 。对于下面所示的电荷泵结果,栅极由 500 kHz 方波驱动,其边沿时间为 100 ns,幅度为 1.5 V,基准电平为 0 V,脉冲占空比为 50%。
微型和纳米结构的表面受到了广泛的关注,因为它们在传感器技术,表面摩擦学以及依从性和能量收集等广泛应用中的潜力。已经研究了几种修改材料表面,例如血浆处理,离子梁溅射,反应性离子蚀刻和激光处理等材料表面[1-3]。在这些方法中,由于其良好的空间分辨率和对不同材料(例如金属,半导体,介电和聚合物)的良好空间分辨率和高可重现性,激光表面处理近年来引起了人们的兴趣[4-6]。从连续波(CW)到超短梁以及从UV到IR的工作波长已经使用了许多类型的激光源[7-8]。由于激光 - 物质相互作用,从纳米到微尺度的各种结构和模式取决于激光参数和材料特性,例如激光诱导的周期性表面结构(LIPS),2D圆形液滴和特定的微型结构,称为Spikes [9-14]。
2 电力 8 2.1 动机. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................8 2.2 电场....................................................................................................................................................................................................................................................................................9 2.2.1 电荷.......................................................................................................................................................................................................................9 2.2.1 电荷.......................................................................................................................................................................................................................9 2.2.2 电荷......................................................................................................................................................................................................................................9 9 2.2.2 电力....................................................................................................................................................................9 2.2.3 叠加原理....................................................................................................................................................................10 2.2.4 镜像对称与电力....................................................................................................................................................10 12 2.2.5 电场 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 电势能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 势能、力和扭矩的关系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ................. ... 27 2.5 材料中的电相互作用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... .... .... 28
AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。
稀释和清洁 必要时使用溶剂 40 稀释或清洁。稀释和清洁时应避免使用任何含酒精的清洁剂。 干燥 涂抹此油墨后,必须清除所有残留溶剂。干燥不彻底会导致油墨表面看起来干燥,而溶剂会滞留在表面下方,导致电阻增加,这表明存在溶剂滞留。随着时间的推移,滞留的溶剂会从油墨中迁移出来,并可能导致油墨与任何材料(如电介质)的粘附问题。 在通过干燥炉或批量干燥炉一次循环后,评估沿其中一条导电路径的点对点电阻。让基材再进行一次干燥循环。再次沿同一路径测量点对点电阻,并将其与原始读数进行比较。如果电阻下降幅度小于 10%,则油墨在第一次干燥循环或通过烤箱后基本干燥。如果电阻下降超过 10%,则需要更长的干燥时间才能完全去除溶剂。
Mats Fahlman 1、Simone Fabiano 1、Viktor Gueskine 1、Daniel Simon 1、Magnus Berggren 1,2 和 Xavier Crispin 1,2 * 1 瑞典诺尔雪平林雪平大学 ITN 有机电子实验室。 2 瑞典诺尔雪平林雪平大学 ITN 瓦伦堡木材科学中心。 *电子邮件:xavier.crispin@liu.se Toc Blurb 有机半导体与多种材料形成干净的界面,包括金属、其他有机半导体、电解质、电介质和生物体。在本综述中,我们讨论了这些界面的性质及其在有机电子器件功能中的核心作用。摘要未掺杂的共轭有机分子和聚合物具有半导体的性质,包括电子结构和电荷传输,可以通过化学设计轻松调整。此外,有机半导体 (OS) 可以进行 n 掺杂或 p 掺杂,成为有机导体(所谓的合成金属),并可表现出混合电子和离子电导率。与无机半导体和金属相比,有机(半)导体具有一个独特的特性:暴露在空气中时,其表面不会形成绝缘氧化物。因此,OS 与许多材料(包括金属和其他 OS)形成干净的界面。过去 30 年来,人们对 OS-金属和 OS-OS 界面进行了深入研究,并形成了一致的理论描述。自 21 世纪以来,人们越来越关注有机电子器件中的界面,这些界面涉及电介质、电解质、铁电体甚至生物有机体。所有这些界面都是有机电子器件功能的核心,界面的物理化学性质决定了光、激子、电子和离子的界面传输,以及电子向细胞分子语言的转导。 [H1] 引言有机半导体 (OS) 可用作各种 (光) 电子器件和电路中的活性材料。与硅基电子器件相比,有机电子器件具有许多独特的特性,例如大的光吸收和发射、溶液可加工性、机械柔韧性以及混合离子和电子传导。OS 包括基于共轭分子或聚合物的一大类半导体(图 1)。OS 的 π 电子形成价带和导带。在还原或氧化时,π 系统容纳负电荷或正电荷,而相反电荷的反离子则中和整个材料。重掺杂会导致电子结构发生剧烈变化,使得带隙消失,位于占据能级和未占据能级之间的费米能级可以定义为费米玻璃 1、金属 2 或半金属 3 。因此,未掺杂和掺杂的 OS 是非常不同的材料,但它们具有一个独特的特性:与无机半导体不同,暴露在空气中时其表面不会形成绝缘氧化物。因此,操作系统
1. 引言近年来,OLED 技术的巨大进步 [1,2,3] 和有机光伏 (OPV) 的迅猛发展证明了有机电子器件的工业和商业潜力。有报道称,体异质结设计中的经典有机光伏器件的效率接近 20%,而钙钛矿的效率甚至超过了这个值。这些里程碑式的进步使得此类发展如今既适用于小规模也适用于大规模应用 [4,5]。尽管如此,尽管最近电子器件和传感器取得了令人瞩目的进步,但下一代 OLED、太阳能电池和印刷电路(基于有机场效应晶体管 (OFET))的制造在寻找新型更高性能半导体、基板和封装材料、电介质和加工条件 [6–11] 等方面仍面临挑战。有机材料在 RF 范围内(即兆赫甚至更高频率)在空气中的稳定运行将支持许多能够与硅基 CMOS 电路竞争的新技术的开发 [8,12–18]。当这些新型电子元件与生物传感元件相结合时,将为开发一次性诊断和药物输送技术开辟可能性[19–29]。
