激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
在单层FR-4样式的PCB上,焊接垫的大小是整体热量升压的主要贡献者。两层和4层PCB降低了热电阻。使用热vias是另一个不错的选择。在更高的功率设计中,有时会发现更昂贵的IMS基材。在所有这些设计中,总体热沉积较少依赖于非常大的焊料垫,而小型化是一种选择,并且可以增加功率散发。TSC还推出了2个新软件包-SMPC4.0和TO277A - 带有裸露的垫子。这些软件包为Diodes Inc和Vishay提供了第二来源。裸露的垫子可以大大帮助减少与消散功率相关的板空间。他们还通过降低RTHJ-l来减少TJ,从而提高可靠性。也是一个称为SOD123HE软件包的较小包装。
典型的性能波长767 nm(k),780 nm(rb)871 nm(yb +),1064 nm(yag)1070 nm(al +)光学功率> 30mw30mw内在线宽5 <3 kHz 〜3 kHz 〜3 kHz 〜3 kHzfWHm linewidth(fwhm linewidth(10°S)5 <100 khz 5 <<<100 khz 5 <<<100 khz 5 <<<<100 khz <<<100 khz <<<<<<<<100 khz。足迹25 x 80mm²质量40 g空间资格和任务
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
在供应器型有机光电器件中,例如有机太阳能电池(OPV)和Expiplex型有机光二极管(EOLED),电荷转移(CT)机制是导致库仑绑定的电荷对(Geginate对(Geginate Pair)的主要过程,它们要么将其分散到自由载体中,要么将其降低到自由载体或放松身心。广泛的理论和实验工作以Onsager计算为基础,以确定初始电子孔距离,并研究电场对Geminate对分离和自由载体的产生的影响。在这里,我们讨论了Reveres Onsager过程,随着E-H距离的降低,场诱导蓝色光谱移动。求解场效应库仑势能方程,我们能够解释观察到的蓝色光谱移位并确定设备结构中的E-H距离,库仑势能和电场分布。该过程提供了对捐赠者接口处的外部重组的基本理解。
使用案例 • 网络分离 − 物理上防止数据从安全域泄漏到非安全域 • 流式视频源 − 将非安全现场资产的高清视频传送到安全环境 • 实时传感器源 − 促进现场数据从传感器到任务操作中心的主动流式传输 • 多播/广播 − 将数据从单一来源分发给授权接收者 • 关键基础设施保护 − 保护工业控制系统网络并协助遵守北美电力可靠性公司关键基础设施计划 (NERC CIP) • 批量文件传输 – 自动在共享网络文件夹之间进行高速文件传输并简化数据库复制 • 隔离分离 − 确保在受控沙盒环境中隔离恶意数据 • 云分离 − 提供敏感云基础设施之间的安全连接 • 安全电子邮件消息传递 − 允许向安全域发送单向电子邮件
OIDA 版权所有 2002 光电子产业发展协会 本报告中包含的所有数据均为 OIDA 所有,未经光电子产业发展协会事先书面许可,不得以原件或复制形式分发给客户内部组织以外的任何人。 出版者: 光电子产业发展协会 1133 Connecticut Avenue, NW, Suite 600 Washington, DC 20036 电话:(202) 785-4426 传真:(202) 785-4428 互联网:http://www.oida.org 赞助者: 光电子产业发展协会 (OIDA) 国家电气制造商协会 (NEMA) 能源部 – 建筑技术、州和社区计划办公室 (DOE-BTS) 编辑:Jeff Y. Tsao Sandia 国家实验室 P.O. Box 5800 Albuquerque, NM 87185-0601 电话:(505) 844-7092 传真:(505) 844-3211 电子邮件:jytsao@sandia.gov 互联网:http://lighting.sandia.gov