这里我们报道了在很宽的掺杂浓度范围(x = 0 ∼ 0 . 8)下锂和乙二胺插层的 FeSe 的结构和电子相图。未掺杂的 (C 2 H 8 N 2 ) y Fe 2 Se 2 结晶为正交相。随着锂掺杂的增加,在 x = 0 . 35 处发生正交到四方相变,并且超导四方相一直持续到 x = 0 . 5。同时,发现 T c 强烈依赖于掺杂剂浓度,从 x = 0 . 35 时的 30 K 迅速上升到 x = 0 . 5 时的 45 K。Li 0 . 31(3) (C 2 H 8 N 2 ) 0 . 52(7) Fe 2 的晶体结构。利用高分辨率中子衍射数据分别在 5、60、150 和 295 K 下测定了 FeSe 四面体的形变。在 150 到 295 K 之间,FeSe 四面体的畸变显著增强,同时,在同一温度范围内正常态霍尔电阻率由负转正。在 230 K 以上,电子掺杂的 Li 0.5(C 2 H 8 N 2 ) y Fe 2 Se 2 中以空穴载流子为主,这表明温度引起的结构畸变可能导致费米面拓扑结构的重构和空穴袋的出现。
摘要:在这项工作中,结合了块共聚物光刻和超低能离子植入,以获得高浓度的磷原子的纳米伏算,该磷原子在P型硅底物中定期处置在宏观区域上。高剂量的植入掺杂剂会授予硅底物的局部非晶化。在这种情况下,磷磷通过植入区域的固相外延再生(SPER)激活,并具有相对较低的温度热处理,以防止磷原子扩散并保留其空间定位。在此过程中,监测样品(AFM,SEM),硅底物(UV拉曼)的结晶度以及磷原子的位置(STEMEDX,TOF-SIMS)的位置。静电势(KPFM)和掺杂剂激活时样品表面的电导率(C-AFM)图与模拟的I-V特性兼容,这表明存在一个不理想的阵列,但工作p-n纳米结构。所提出的方法为进一步研究的可能性铺平了道路,该方法通过改变自组装的BCP膜的特征性维度来调节纳米级硅底物内的掺杂剂分布。关键字:块共聚物,离子植入,掺杂,硅,PS-B-PMMA■简介
摘要:掺杂灯笼的纳米晶体(NCS)能够有效的光子上转换,即吸收长波长光和发射较短的波长光。启用上转换的内部过程是一个复杂的电子过渡和掺杂中心之间的能量转移网络。在这项工作中,我们研究了从β -nayf 4 NCS上的上升转换发射的上升和衰减动力学,并用ER 3+和YB 3+编码。红色和绿色上流排放的上升动力学是非线性的,反映了上转换的非线性性质,并揭示了填充发射状态的机制。激发状态衰减动力学是不符合的。我们使用光子实验揭示了潜在的衰减途径。这些在视觉上揭示了不同上转换途径的贡献,因为每个途径对光学状态的局部密度的系统变化都有明显的响应。此外,光学态的局部密度对仅核心NC的局部密度在质量上与核心 - 壳NC的作用在质量上不同。这是由于产生向上发射的电子水平的喂食与衰减之间的平衡所致。对此处提供的上转换动力学的理解可能会导致更好的成像和传感方法依靠上转换寿命或指导掺杂剂浓度的合理优化以使其更明亮。关键字:胶体纳米晶体,上转换,灯笼离子,激发状态动力学,光学状态的局部密度
VaporSorb ™ TRK 化学空气过滤器可完全抵御各种分子气相酸(强酸和弱酸)、碱和可冷凝有机物。VaporSorb TRK 过滤器符合赛道 OEM 规格,并采用正在申请专利的聚合物介质,这些介质完全不含掺杂剂且不会排气。这些高性能过滤器可去除空气中的胺、无机酸、弱酸(包括乙酸、亚硝酸和甲酸)和浓度低于十亿分之一的有机物。
根本性设计变革半导体通常是通过深度扩散工艺制成的,该工艺将掺杂剂(元素杂质)引入硅晶片的晶格中。掺杂剂将晶片转变为能够有效导电的器件。掺杂剂类型决定了每个半导体区域的导电特性:N 型掺杂剂(如磷)产生负电荷载流子区域,而 P 型掺杂剂(如硼)产生正电荷载流子区域。DSRD 还包含轻掺杂的本征区域。这个高温区域夹在 N 型半导体和 P 型半导体之间,半导体中的电传导主要由价带和导带之间的激发电子决定。控制掺杂剂的分布和每个半导体层的厚度对于确保最终器件的最佳性能至关重要。然而,多年来用于生产第一代 DSRD 的扩散工艺繁琐、耗时且成本高昂,使得很难根据需求调整制造时间表。 “掺杂剂扩散是一种标准的半导体制造工艺,但就 DSRD 而言,该工艺既无法得到很好的控制,也无法大规模生产,”MED 工程师、外延 DSRD 团队成员 Sara Harrison 说道。掺杂剂深入硅中所需的扩散过程可能长达一周以上,整个过程
光电子学与先进材料杂志 第 24 卷,第 1-2 期,2022 年 1 月 - 2 月,第 69-73 页 传统固相法合成的 Zn 掺杂钛酸钡陶瓷的结构和电学性能研究 EHSAN UL HAQ 1、MUHAMMAD RAMZAN ABDUL KARIM 2,*、KHURRAM IMRAN KHAN 2,*、WASEEM AKRAM 1、SYED SHABBAR HASSAN 1、FAHAD KASHIF 1 1 巴基斯坦拉合尔工程技术大学冶金与材料工程系,邮编 54890 2 巴基斯坦托皮-23640 GIK 工程科学与技术研究所材料与化学工程学院 钛酸钡 (BaTiO 3 ) 是一种具有压电和铁电性能的突出陶瓷材料。尽管在执行器、光电子器件和电容器中有着广泛的应用,但 BaTiO 3 的高响应时间和介电损耗限制了它的有效利用。氧化锌 (ZnO) 已成为多项研究中控制压电材料晶粒生长行为和介电性能的首选掺杂剂。在本研究中,通过常规固态方法将 0.02 wt.% 至 0.08 wt.% 的各种 ZnO 浓度添加到钛酸钡 (BaTiO 3 ) 中,然后在 1150 o C 下烧结 2 小时。在 X 射线衍射 (XRD) 分析中,所有掺杂剂浓度均未检测到第二相,表明所有添加的 ZnO 都已融入 BaTiO 3 中形成化学配方为 BaZn x Ti 1-
摘要:近年来,作为低成本,导电层的半导体聚合物已受到越来越多的关注。为了显示合理的电导率,必须掺杂半导体聚合物,该过程需要氧化或还原共轭主链和结构重排,以便将电荷平衡柜台容纳到聚合物网络中。在这里,我们旨在了解这种结构重排如何有助于掺杂的能量。我们利用了一个事实,即摩擦对齐的聚(3-己基噻吩-2,5-二苯基)(p3HT)膜包含两个多晶型物,一种具有晶体结构,其密度低于在未对齐的膜中观察到的结构,而另一个具有更紧密的,更紧密的浓度,浓度更紧密的晶状体结构。分别相对于底物,这两种结构分别是面对面和边缘的,因此它们的衍射在Q空间中很好地分开,因此可以分别监测每个种群的掺杂诱导的结构变化。当电影掺杂2,3,5,6- tetrafluoro-7,7,8,8-四甲苯喹啉甲烷烷(F 4 TCNQ)时,比浓度更容易诱导的结构变化,而不是浓度更容易诱导的结构变化。这一发现表明,在掺杂过程中,聚合物晶体结构的重新排列是一个重要的能量术语,并且可以通过设计新聚合物来促进半导体聚合物的掺杂,在该聚合物中,可以在结构减少的聚合物及时中容纳掺杂剂。s
(VB) 移至导带 (CB),在 VB 中产生空穴 (h +)。Mg 和 S 掺杂剂产生窄带隙,使得在相似能量下更容易区分光诱导电荷载流子。因此,在相似能量下更容易分离光诱导电荷载流子 (Singaram et al., 2017)。Mg 和 S 离子既充当电子受体又充当供体,将成功抑制电荷复合并产生更具反应性的物种以促进 MB 降解。由于
我们对非磁性Skutterudite相关的Y 5 RH 6 SN 18超导体进行了系统研究,其中连贯长度尺度上的晶格疾病搭配搭配竞争越来越多,并产生了非均匀的,高温的超导相位,具有无序的增强型临界温度t。我们以前已经讨论过局部原子障碍的各种可能性。可能性之一是兴奋剂。我们目前的研究集中于Y 5 -δ的系列(RH 5。5 m 0。5)sn 18化合物(δ≪1),其中掺杂剂m = co,ir,ru和pd,当它们较小(CO)或大于RH时,它们比关键的firderd h c 2产生峰值效应。这种现象在AC敏感性的真实和虚构部分中表现为弱峰,并且在磁性方面更为明显。使用一个简单的理论模型,我们证明了该机制的有效性不仅取决于掺杂剂和宿主原子的差异的大小,还取决于掺杂剂是否较小还是更大。该预测与我们的实验数据之间的一致性强烈支持观察到的峰值效应的基于杂质的方案。磁磁性等温线(M = ir和ru),M的半径与R rh显示非常相似,但是,较弱的峰效应样行为,这主要是由于Y位点的空位δ,而相应的敏感性等距在H〜H C 2处显示出不同的峰值。我们还报告了y 5 rh 6 sn 18用PD和Co.这种依赖性χAC异常在本质上与峰值效应相似。但是,它不能归因于固定,并且似乎是系统的平衡属性。