现在存在几种方案来获得对原子结构的控制;但是,许多人不考虑原子的坐标。在使用电子束控制的最初实现中,例如,在石墨烯中的掺杂运动运动时,人类操作员将手动将光束放置在附近的掺杂剂,以使其与邻居碳交换位置。在这些情况下,考虑原子位置,但这完全是手动程序。要将其扩展并推广到其他系统,需要相对于特定原子组的光束定位自动化。换句话说,必须在尽可能接近实时的接近时,然后进行特定的光束定位。最近,结果表明,集成神经网络可以处理STEM图像的实时原子分割[4,5]。也许更关键的是,这种原子分类方案必须是稳健的,因为它是在实验过程中积极执行的,这意味着模型超参数无法不断更改以提供合理的坐标提取。无论如何,合奏网络既可以实时为原子分割提供快速和强大的解决方案。提供了原子坐标和类,必须选择光束位置。对于某些材料,可以显然应放置梁以引起所需的响应,即形成预期的缺陷结构。在其他材料中,它可能更为复杂,例如,大量的国家行动对集合,其中梁位于分布中相对于原子类中的分布,并成像所得的结构;理论计算可以替代地进行
摘要:这项研究提出了一种通过单步电化学合成来制造阳极co-f - Wo 3层的新方法,利用氟化钴作为电解质中的掺杂剂来源。所提出的原位掺杂技术利用了氟的高电负性,从而确保在整个合成过程中COF 2的稳定性。在存在氟化物离子的情况下由阳极氧化物溶解引起的纳米孔层的形成有望有助于将钴化合物的有效掺入膜中。这项研究探讨了掺杂剂在电解质中的影响,对所得材料进行了全面的表征,包括吗啡,成分,光学,光学,电化学和光电化学特性。通过能量色散光谱(ED),X射线衍射(XRD),拉曼光谱,光致发光测量,X射线光电学光谱(XPS)和Mott-Schottky分析证实了WO 3的成功掺杂。光学研究表明,共掺杂材料的吸收较低,带隙能量略有变化。光电化学(PEC)分析表明,共掺杂层的PEC活性提高了,观察到的光电流发作电位的变化归因于钴和氟化物离子催化效应。该研究包括对观察到的现象的深入讨论及其对太阳能分裂中应用的影响,强调了阳极Co-f-wo 3层作为有效的光电子的潜力。此外,该研究还对阳极co -f -wo 3的电化学合成和表征进行了全面探索,强调了它们的氧气进化反应(OER)的光催化特性。发现共掺杂的WO 3材料表现出更高的PEC活性,与原始材料相比,最大增强了5倍。此外,研究表明,可以有效地将这些光射流用于PEC水分实验。关键字:氧化钨,阳极氧化,原位掺杂,纳米结构形态,OER,光电化学特性
摘要在这项研究中,掺杂元元件对超声喷涂的Moo 3薄膜的线性,非线性吸收和光学限制特性的影响。线性光学结果表明,随着带量的缺陷状态的密度与掺杂的密度增加,并结合使用带隙能量和URBACH能量的增加。广泛的光致发光排放在350和600 nm的范围内,通过掺杂降低了强度。揭示了对非线性吸收(NA)行为的缺陷效应,使用两个理论模型分析了OA Z-SCAN数据,仅考虑两种光子吸收(2PA)(模型1)和一个光子吸收(OPA),2PA和自由载体吸收(模型2)。观察到NA行为,并发现由于新的氧空位和进一步缺陷状态的形成而产生的输入强度和掺杂原子会增强。模型2中薄膜的Na系数比模型1中的2PA系数高100倍。该结果揭示了缺陷状态对NA行为的强烈影响。在研究的掺杂原子中,由于缺陷态密度较高,CU导致Na增强。虽然真正的2Pa是V和Fe掺杂的MOO 3薄膜的主要Na机制,但OPA和2PA是Ni,Zn和Cu掺杂的MOO 3薄膜的主要Na机制,因为它们的缺陷状态较高。Cu掺杂的MOO 3薄膜的光学限制阈值为0.026 MJ / cm 2,这是由于其增强的Na行为。考虑到获得的结果,这项研究为可见的波长区域中的光学限制器打开了掺杂的MOO 3薄片的潜力的门。
静电掺杂旨在用超薄 MOS 结构中栅极诱导的自由电子/空穴电荷取代施主/受主掺杂剂种类。高掺杂的 N + /P + 端子和虚拟 PN 结可以在未掺杂层中模拟,从而促进具有丰富功能的创新可重构设备。其独特优点是载流子浓度和极性(即静电掺杂)可通过栅极偏置进行调整。在介绍基础知识之后,我们将回顾采用新兴或成熟技术(纳米线、纳米管、2D 材料、FD-SOI)制造的静电掺杂设备系列。通过强调与传统物理二极管的区别,讨论了 Hocus Pocus 二极管的多个方面。静电掺杂产生了许多具有出色记忆性和锐切换能力的频带调制设备。详细描述了其概念、内在机制和典型应用。
摘要 —基于密度泛函理论(DFT)计算,提出了一种关于HfO 2 基铁电器件中氧空位(Vo)的新机制。在该机制中,除了已知的o相HfO 2 之外,m相HfO 2 中的Vo不仅作为电子陷阱而且也表现出铁电性。而“唤醒”过程中剩余极化的增加主要归因于这部分Vo-m相HfO 2 铁电单元。基于新机制,开发了动力学蒙特卡罗(KMC)模拟器来量化在HfO 2 基铁电器件中观察到的典型电场循环行为,包括唤醒、疲劳、分裂和击穿效应。这种新的认识建立了Vo与循环行为之间的关系,并进一步揭示了掺杂剂与HfO 2 基铁电器件唤醒特性之间的联系。
探测原子形成的多苯胺/多吡咯/碳纳米管纳米管纳米复合材料Pawan Sharma,1 Kartika Singh,1 Akshay Kumar,2 Deepak Kumar,2 Harish Mudila,1 Harish Mudila,1 Udayabhaskar Rednam,3 P. E. Lokhan,3 p.e. lokhan and* Kumar 1, *抽象化学氧化聚合已用于合成聚苯胺/多吡咯/碳纳米管(PANI/PPY/CNT)三元纳米复合材料。过硫酸铵和盐酸分别用作氧化剂和掺杂剂。在这些纳米复合材料中,PPY充当Pani和CNT基质中的填充剂。应用各种物理化学技术来评估纳米复合材料的结构和热性质。观察到,与1 wt%,2 wt%和4 wt%的PANI和CNT矩阵中的负载相比,0.5 wt%的PPY载荷表现出更大的结晶度和热稳定性。
摘要在这项研究中,通过用苯胺盐氧化聚合方法制备了聚苯胺(PANI)。p-硫烯磺酸(P TSA)充当赋予导电性能的掺杂剂。掺杂过程将PANI的颜色从蓝色Pani Emeraldine碱(EB)转变为绿色Pani Emeraldine Salt(ES)。通过热重分析(TGA)和差异扫描量热法(DSC)分析了掺杂的PANI的热特性。TGA结果说明了PANI-EB体重减轻的两个主要阶段,这是水分含量和聚合物降解的损失。pani-es显示了三个降解阶段,这些阶段是去除掺杂剂,水分含量和聚合物主链的分解。Pani-es开始在170至173°C的较高温度下降解。这个结果表明,与PANI-EB相比,Pani ES具有更高的热稳定性,而PANI-EB的温度范围为160至163°C的较低温度开始恶化。dsc分析表明,pani的PTSA中有0.9 wt。PTSA的热量表中描绘了一系列宽峰,这表明与PANI相比,与PANI相比,pani的峰值较高,而PANI则具有不同浓度的PTSA。此外,pani为0.9 wt。%的P TSA在125°C时表现出最高的热稳定性。准备好的PANI通过应用易于浸入技术来制造导电织物。将棉布浸入三种不同浓度(0.3、0.6和0.9 wt。%)的Pani-PSA溶液中。基于电阻抗光谱(EIS)分析的发现,可以得出结论,与PANI相比,PANI的PANI为0.9 wt。PTSA的PANI表现出更好的电导率(3.30 x 10 -3 s/m),而PANI的电导率(1.06 x 10 -7 s/m)。关键词:聚苯胺,导电聚合物,热重分析,差扫描量热法,电阻抗光谱
MSEC 7395M。半导体器件和加工。本课程介绍半导体器件的基础知识、硅和复合半导体材料制造、光刻、蚀刻、控制掺杂剂分布以形成纳米级器件所需的浅结、离子注入和微结构工程、不同类型的掺杂现象、载流子作用和电荷传输特性、缺陷微结构、低电阻率欧姆接触以及传统和新兴微/纳米电子器件的不同制造概念。此外,学生将参与实验室项目和研讨会演讲。先决条件:MSEC 7401,成绩为“B”或更高。3 个学分。3 个讲座接触小时。0 个实验室接触小时。课程属性:从 3 连读处理中排除|主题评分模式:标准字母