朝着动态全脑模型的有效验证迈进 Kevin J. Wischnewski 1,2、Simon B. Eickhoff 1,2、Viktor K. Jirsa 3 和 Oleksandr V. Popovych 1,2,* 1 德国于利希研究中心神经科学和医学研究所 - 大脑和行为(INM-7),德国于利希 2 德国杜塞尔多夫海因里希海涅大学系统神经科学研究所,德国杜塞尔多夫 3 法国艾克斯-马赛大学 INSERM 系统神经科学研究所(INS,UMR1106)* 通讯作者 摘要 通过数学全脑模型模拟静息状态的大脑动态需要对参数进行最佳选择,这决定了模型复制经验数据的能力。由于通过网格搜索(GS)进行参数优化对于高维模型来说是不可行,我们评估了几种替代方法来最大化模拟和经验功能连接之间的对应性。密集 GS 作为评估四种优化方案性能的基准:Nelder-Mead 算法(NMA)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMAES)和贝叶斯优化(BO)。为了对它们进行比较,我们采用了一组耦合相位振荡器,该振荡器基于 105 名健康受试者的个体经验结构连接而构建。我们从二维和三维参数空间中确定最佳模型参数,并表明测试方法的整体拟合质量可以与 GS 相媲美。然而,所需的计算资源和稳定性特性存在明显差异,在提出 CMAES 和 BO 作为高维 GS 的有效替代方案之前,我们还对这些差异进行了研究。对于三维情况,这些方法产生的结果与 GS 相似,但计算时间不到 6%。我们的结果有助于有效验证用于个性化大脑动力学模拟的模型。简介继 Biswal 等人的开创性工作之后。1 ,神经影像学研究的注意力转向了静息状态的大脑活动 2,3 。在任务诱发的功能网络和从静息时的人脑活动中观察到的相应连接模式之间发现的相似性强烈地激发了对后者的研究 1,4,5 。人们开发了大量的静息状态动力学研究方法和应用。一方面,它们旨在了解大脑的结构和功能,另一方面,旨在区分健康和患病的个体 6-12 。通过动态全脑模型对复杂的时空大脑活动模式进行数值模拟,为实现这两个目标提供了一条有希望的途径 13-19 。数据驱动的动态模型允许将有关人类大脑的解剖信息纳入其动态特性的模拟中。换句话说,它们使研究人员能够研究大脑结构和功能之间的关系,特别关注后者是否以及如何从前者中产生,以及它们如何相互关联 13-19 。此外,模型提供了一种快速的计算机实验方法来研究和比较不同的大脑分区、网络配置和数据预处理参数,这又有助于更深入地了解大脑结构和动态之间的相互作用 20-22 。所讨论的建模方法的另一个优点是
摘要。高维量子态的实验工程是几种量子信息协议的关键任务。然而,应用现有的量子态工程协议需要对噪声实验装置进行高精度的表征。这在实际场景中往往是缺乏的,影响了工程状态的质量。我们通过实验实现了一个自动自适应优化协议来设计光子轨道角动量 (OAM) 状态。该协议在给定目标输出状态的情况下,根据输出测量统计数据对当前产生的状态的质量进行在线估计,并确定如何调整实验参数以优化状态生成。为了实现这一点,该算法不需要包含生成设备本身的描述。相反,它在完全黑盒的场景中运行,使该方案适用于各种各样的情况。该算法控制的手柄是一系列波片的旋转角度,可用于概率地生成任意四维 OAM 状态。我们在经典和量子领域展示了不同目标状态下的方案,并证明了其对控制参数外部扰动的鲁棒性。这种方法代表了一种强大的工具,可用于自动优化量子信息协议和技术的嘈杂实验任务。
摘要。高维量子态的实验工程是几种量子信息协议的关键任务。然而,应用现有的量子态工程协议需要对噪声实验装置进行高精度的表征。这在实际场景中往往是缺乏的,影响了工程状态的质量。我们通过实验实现了一个自动自适应优化协议来设计光子轨道角动量 (OAM) 状态。该协议在给定目标输出状态的情况下,根据输出测量统计数据对当前产生的状态的质量进行在线估计,并确定如何调整实验参数以优化状态生成。为了实现这一点,该算法不需要包含生成设备本身的描述。相反,它在完全黑盒的场景中运行,使该方案适用于各种各样的情况。该算法控制的手柄是一系列波片的旋转角度,可用于概率地生成任意四维 OAM 状态。我们在经典和量子领域展示了不同目标状态下的方案,并证明了其对控制参数外部扰动的鲁棒性。这种方法代表了一种强大的工具,可用于自动优化量子信息协议和技术的嘈杂实验任务。
就像一张纸一样,电子纸可以用在照明中。除了节能之外,电子纸还具有提供无眩光表面的额外好处,即使在阳光下也能提高可视性(相比之下,目前的发射显示器在阳光充足的情况下很难看清)。[1,2] 基于液晶或电泳显示器等的黑白电子纸已经是流行的消费产品。然而,开发高性能彩色电子纸更具挑战性。特别是,仅基于环境光的图像生成会限制最大亮度。因此,仅仅优化色彩质量(色度)是不够的,高性能电子纸还需要高的绝对反射率。[3] 最近的研究探索了各种方法来创建高反射表面,这些方法基于薄膜腔的结构着色[4–9]、等离子体[10–15]或电介质超表面。 [16–18] 这些系统进一步与液晶、相变或电致变色材料等功能材料相结合,以打开/关闭此类反射表面。[19–23] 但是,即使单个区域可以提供 100% 的峰值反射率,使用彼此相邻的传统 RGB 子像素创建彩色图像也会将最大反射率降低到最多 33%,因为每种颜色最多只能占据总面积的三分之一。为了解决这个问题,我们需要开发具有可调颜色的反射像素(单像素),而不是依赖具有固定颜色的相邻像素。已经探索了各种方法来动态调整光腔和超表面的共振和颜色,[1,19,22,24–27] 其中一些通过电刺激来调节反射的结构颜色。[25,28,29] 其中包括使用具有电致变色特性的材料来调节纳米光腔和等离子体装置。 [3,30–32] 例如,Peng 等人利用聚苯胺的电化学可调折射率 (RI) 来控制聚合物涂覆的等离子体金纳米粒子和金属表面之间形成的间隙等离子体。 [33] 此类系统中的色域和色度通常受到限制,部分原因是 RI 可调性有限,以及电致变色材料的相对吸收性。最近,氧化钨 (WO3) 等无机电致变色材料也被提议用于光学腔的颜色调谐。 [3,34,35] 然而,任何单个 WO3 腔结构的调谐都无法覆盖整个可见光范围,[3] 这主要是因为无机电致变色材料没有提供足够的 RI 变化,并且在离子插入时也不会改变其厚度。为了实现全色调谐,使用
摘要:增材制造 (AM) 在航天领域的应用日益广泛,这促使我们研究了通过复合行星齿轮系系统 (C-PGTS) 集成动态平衡系统 (DBS) 并完全通过 AM 实现的单自由度 (DoF) 指向系统 (PS) 的可行性。我们详细分析了系统的动力学,涉及原型的设计和实现。对于本文而言,至关重要的是精心选择适合太空恶劣条件的 AM 材料。通过比较实验部分和模拟结果,我们强调了 PS 的正确尺寸以及 DBS 在维持卫星姿态方面的重要性。结果还证实了 AM 在生产复杂机械系统方面的能力,该系统具有高精度、有趣的机械性能和低重量。这表明 AM 在空间领域具有潜力,既可用于结构部件,也可用于本文中列出的有源部件。
摘要:增材制造 (AM) 在航天领域的应用日益广泛,这促使我们研究了通过复合行星齿轮系系统 (C-PGTS) 集成动态平衡系统 (DBS) 并完全通过 AM 实现的单自由度 (DoF) 指向系统 (PS) 的可行性。我们详细分析了系统的动力学,涉及原型的设计和实现。对于本文而言,至关重要的是精心选择适合太空恶劣条件的 AM 材料。通过比较实验部分和模拟结果,我们强调了 PS 的正确尺寸以及 DBS 在维持卫星姿态方面的重要性。结果还证实了 AM 在生产复杂机械系统方面的能力,该系统具有高精度、有趣的机械性能和低重量。这表明 AM 在空间领域具有潜力,既可用于结构部件,也可用于本文中列出的有源部件。
weyl semimetals(WSM)中的电荷密度波(CDW)已被证明会诱导一个外来的轴心绝缘相,其中CDW的滑动模式(Phason)充当动力轴承纤维,从而产生大型的正磁磁性[Wang等人。修订版b 87,161107(r)(2013); Roy等人,物理。修订版b 92,125141(2015); J. Gooth等人,自然575,315(2019)]。在这项工作中,我们预测动态应变会诱导由CDW覆盖的时间 - 反转 - (Tr-)不变的WSM中的散装轨道磁化。我们将这种效果称为“动态压电效应”(DPME)。与[J. Gooth等人,Nature 575,315(2019)],在这项工作中引入的DPME发生在散装组合中(即,在散装中的静态和空间均匀,并且不依赖于闪光,例如phason。通过研究低能效果理论和最小的紧密结合(TB)模型,我们发现DPME源自有效的山谷轴纤维,以将电磁体的ELD结合使用,以应变诱导的Pseudo-gauge-gauge-gauge-eLD。尤其是在先前作品中研究的压电效应的特征是2D浆果曲率,而DPME代表了源自Chern-Simons 3-Form的基本3D菌株效应的第一个例子。我们进一步发现,DPME在CDW顺序参数相位的临界值时具有不连续的变化。我们证明,当DPME中有跳跃时,系统的表面会经历拓扑量子相变(TQPT),而整体则保持不变。因此,dpme在trimiant weyl-cdw中提供了边界TQPT的大量标志。
照明,就像一张纸一样。除了节能外,电子纸还具有提供无眩光表面的额外好处,可见性甚至可以改善阳光(与当前在阳光明媚的条件下难以看见的当前发射显示器相比)。[1,2]基于液晶或电子表演的黑色和白色电子纸纸已经是流行的消费产品。但是,开发高色彩纸的颜色更具挑战性。特别是,仅基于环境光的图像生产对最大可能的亮度施加限制。因此,仅优化颜色质量(色度)不足,但是高性能的电子纸也需要高度的绝对反射。[3]最近的研究探索了各种方法,以基于薄膜的结构颜色[4-9]或等离子体[10-15]或介电元面而产生高度反映表面。[16–18]这些系统已与功能材料,如液晶,相变或电致色素材料(以开/关反射表面开关)相结合。[19-23]但是,即使各个区域将提供100%的峰值反射率,使用传统的RGB子像素彼此隔壁创建颜色图像也可以将最大反射率降低至33%,因为每种颜色最多只能占据总面积的三分之一。为了避免此问题,我们需要开发具有可调颜色(单个颜色)的反射像素,而不是依靠带有固定颜色的邻居像素。[3,30–32],例如Peng等。使用已经探索了各种方法,以动态调整光腔和元面的共振和颜色,[1,19,22,24-27],其中有些通过电刺激并调节反射的结构颜色。[25,28,29]其中是使用具有电致色谱特性的材料来调节纳米光腔和等离子装置。利用了聚苯胺的电化学可调折射率(RI),以控制聚合物涂层的等离子等离子金纳米颗粒和金属表面之间形成的间隙等离子体。[33]颜色域和色度通常在此类系统中受到限制,部分是由于RI-TONEABISIS和电染色材料的相对吸收性。最近还提出了用于光腔的颜色调整的无机电色材料(例如氧化钨(WO 3))。[3,34,35]然而,对任何单个WO 3腔结构的调整都不覆盖整个可见范围,[3]主要是因为无机的电染料材料没有足够的RI变化,并且在离子插入时也没有改变其厚度。
封闭量子系统表现出不同的动态状态,如多体局部化或热化,它们决定了信息传播和处理的机制。本文我们讨论了这些动态阶段对量子库计算的影响,量子库计算是一种非常规计算范式,最近扩展到量子领域,利用动态系统来解决非线性和时间任务。我们确定热阶段自然适应量子库计算的要求,并报告了所研究任务在热化转变时性能的提高。揭示自旋网络最佳信息处理能力背后的潜在物理机制对于未来的实验实现至关重要,并为动态阶段提供了新的视角。
湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。