朝着动态全脑模型的有效验证迈进 Kevin J. Wischnewski 1,2、Simon B. Eickhoff 1,2、Viktor K. Jirsa 3 和 Oleksandr V. Popovych 1,2,* 1 德国于利希研究中心神经科学和医学研究所 - 大脑和行为(INM-7),德国于利希 2 德国杜塞尔多夫海因里希海涅大学系统神经科学研究所,德国杜塞尔多夫 3 法国艾克斯-马赛大学 INSERM 系统神经科学研究所(INS,UMR1106)* 通讯作者 摘要 通过数学全脑模型模拟静息状态的大脑动态需要对参数进行最佳选择,这决定了模型复制经验数据的能力。由于通过网格搜索(GS)进行参数优化对于高维模型来说是不可行,我们评估了几种替代方法来最大化模拟和经验功能连接之间的对应性。密集 GS 作为评估四种优化方案性能的基准:Nelder-Mead 算法(NMA)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMAES)和贝叶斯优化(BO)。为了对它们进行比较,我们采用了一组耦合相位振荡器,该振荡器基于 105 名健康受试者的个体经验结构连接而构建。我们从二维和三维参数空间中确定最佳模型参数,并表明测试方法的整体拟合质量可以与 GS 相媲美。然而,所需的计算资源和稳定性特性存在明显差异,在提出 CMAES 和 BO 作为高维 GS 的有效替代方案之前,我们还对这些差异进行了研究。对于三维情况,这些方法产生的结果与 GS 相似,但计算时间不到 6%。我们的结果有助于有效验证用于个性化大脑动力学模拟的模型。简介继 Biswal 等人的开创性工作之后。1 ,神经影像学研究的注意力转向了静息状态的大脑活动 2,3 。在任务诱发的功能网络和从静息时的人脑活动中观察到的相应连接模式之间发现的相似性强烈地激发了对后者的研究 1,4,5 。人们开发了大量的静息状态动力学研究方法和应用。一方面,它们旨在了解大脑的结构和功能,另一方面,旨在区分健康和患病的个体 6-12 。通过动态全脑模型对复杂的时空大脑活动模式进行数值模拟,为实现这两个目标提供了一条有希望的途径 13-19 。数据驱动的动态模型允许将有关人类大脑的解剖信息纳入其动态特性的模拟中。换句话说,它们使研究人员能够研究大脑结构和功能之间的关系,特别关注后者是否以及如何从前者中产生,以及它们如何相互关联 13-19 。此外,模型提供了一种快速的计算机实验方法来研究和比较不同的大脑分区、网络配置和数据预处理参数,这又有助于更深入地了解大脑结构和动态之间的相互作用 20-22 。所讨论的建模方法的另一个优点是
主要关键词