背景:电解质失衡显着,使心电图(ECG)成为至关重要的非侵入性工具。这项研究系统地重新查看并荟萃分析了AI模型的诊断性准确性,用于检测ECG的这些失衡,旨在增强早期检测并改善心脏护理。方法:我们搜索了9个数据库和参考列表。两名审稿人通过诊断准确性研究2(Quadas-2)的质量评估偏见。测试性能数据被提取到2×2表中,并计算出具有双变量随机效应模型的特异性,灵敏度和诊断优势比(DOR)的汇总估计值,该模型呈现在前面图和摘要接收器的操作特征曲线中。我们通过元回归探索了异质性,检查了内部/外部数据集和铅数。结果:包括有关钾,钙和钠的21项研究。仅在钾失衡(10项研究)上进行了荟萃分析,从五个国家进行了600,000多个ECG,主要是12个国家。在八项研究中,载于高钾血症,合并的灵敏度,特异性和DOR为0.856(95%CI:0.829-0.879),0.788(0.744-0.826)和21.8(17.8-26.7)。低钾血症(六项研究),合并灵敏度,特异性和DOR为0.824(0.785-0.856),0.724(0.668-0.774)和12.27(9.15–16.47)。Quadas-2评估显示,患者选择偏见的高风险为52%,这主要是由于采样细节不足和病例对照方法。结论:AI模型可以检测基于ECG的元素异常,尤其是高钾血症,并且在需要频繁的电解质评估的ICU环境和对终末期肾脏疾病患者的家庭监测中有价值。然而,对各种临床环境,医院,种族,国家和地区进行了更大的回顾性和前瞻性研究。
摘要:我们提出了一种非侵入性识别心脏异位激活的方法。异位活动会触发致命的心律不齐。因此,异位灶或最早激活位点(EAS)的定位是心脏病专家决定最佳治疗方面的关键信息。在这项工作中,我们通过最大程度地减少心脏模型预测的ECG之间的不匹配(在给定的EAS上的节奏),而在异位活动期间观察到的ECG来最大程度地降低心脏模型预测的ECG之间的不匹配,从而提出识别问题作为全局优化问题。我们的心脏模型在求解躯干中的心脏激活和正向bidomain模型的各向异性核心方程方面的量具有用于计算ECG的铅方法方法。我们在心脏表面上构建了损失函数的高斯过程替代模型,以执行贝叶斯优化。在此过程中,我们迭代评估较低的置信结合标准后的损失函数,该标准结合了探索表面与最小区域的开发。我们还扩展了此框架以结合模型的多个级别。我们表明我们的过程仅在11后收敛到最低。7±10。4迭代(20个独立运行),用于单项实现案例和3个。5±1。7迭代次数。我们设想可以在临床环境中实时应用此工具,以识别潜在危险的EAS。
摘要 - 有效的手段,可以实现单铅,非侵入性和干性心电图(ECG)测量值,为在非临床环境中对移动用户进行长时间心律监测提供了潜力。但是,现有的ECG调查方法需要精确的电极放置,暨塞接线,并要求用户保持固定。另外,当前基于心脏的基于心脏的方法(例如Phonocartiogrons)缺乏检测至关重要的心律特征的灵敏度和精度,并且容易受到环境噪声的影响。这项工作利用脖子上的宽带宽表面声波麦克风通过颈动脉捕获心脏声音。提议将心形信号转换为相应的ECG波形的跨模式自动编码器,一种用于信号模态转换的最新算法。由9个参与者研究结果证明了通过声音声音构建PQRST波形的有效性,并准确地确定了关键的PQRST指标。最后,展示了用户步行的移动声学ECG波构建,为不引人注目的,长期的低成本每日心律监测奠定了基础。临床相关性 - 转换心脏声音信号,以实现突出的心电图指标,可以使用单节点干可穿戴设备进行低成本的每日心律监测。
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
- “心律失常检测” - “心电图心律失常” - “室性心律失常” - “室上性心律失常” - “早搏” - “心脏传导阻滞” - “心动过缓” - “心动过速” - “12 导联心电图” - “心脏信号处理” - “心电图中的深度学习” - “CNN” - “DNN” - “LSTM” - “Transformers” - “混合模型”
摘要 - 深度学习的出现显着增强了心电图分析(ECGS),这是一种对评估心脏健康至关重要的非侵入性方法。尽管ECG解释的复杂性,高级深度学习模型的表现优于传统方法。但是,ECG数据的复杂性日益增加以及对实时和准确诊断的需求需要探索更健壮的架构,例如变压器。在这里,我们对应用于ECG分类的变压器体系结构进行了深入的审查。这些模型最初是为自然语言处理而开发的,这些模型捕获了其他模型可能忽略的ECG信号中复杂的时间关系。我们对最新的基于变压器的模型进行了广泛的搜索,并总结了它们,以讨论其应用程序的进步和挑战,并提出潜在的未来改进。本评论是研究人员和从业人员的宝贵资源,旨在阐明这种创新的ECG解释中的应用。
摘要 - 这项研究描述了创建无线可运输的Holter监测器,以提高心脏病诊断的准确性。这项研究的主要目标是开发一种适合贫困地区的低成本心脏筛查系统,以解决心血管死亡的上升速度。建议的系统包括使用连接的电极进行实时心脏信号收集的无线心电图(ECG)模块,WiFi使数据传输成为可能,以进行云服务器进行档案和分析。系统使用神经网络模型来自动ECG分类,重点关注心脏异常的识别。我们升级的深层神经网络体系结构超越了心脏病专家级ECG分析的诊断表现,该结构进行了彻底的评估,并显示出惊人的准确率超过88%。这项开创性的技术提供了一种快速,准确且价格合理的心脏筛查选项,该技术将无线数据传输与AI辅助诊断合并。除了提供开发过程的详细概述外,本文还突出了用于提高模型准确性的方法,例如数据制备,使用过度采样和模型进行细调。工作显示了由AI提供动力并最大化可穿戴和云计算资源的全面远程心脏筛查系统的生存能力。这种尖端的远程健康监测技术对改善健康成果和早期识别有很大的希望,尤其是在资源受限的国家中。
teratogy是科学的分支,侧重于胎儿发育异常的原因和机制。致病作用主要与与化学药物,物理因素和电离辐射的接触有关。怀孕的前两周特别关键,因为在此期间暴露于致畸剂可以显着影响胚胎发育。这些物质中的许多物质都会渗入人体组织并影响发育中的胎儿,从而导致各种生殖健康问题。致病性暴露的后果可能会有很大的不同,从不孕症和生长限制开始到结构异常,中枢神经系统中的功能问题,流产甚至胎儿的灭亡。可以使用筛查和测试方法来识别婴儿的致畸缺陷。
心理健康,尤其是压力,对生活质量起着至关重要的作用。在月经周期的不同阶段(黄体期和卵泡期),女性对压力的反应可能与男性不同。因此,如果不考虑性别,这可能会影响机器学习模型的压力检测和分类准确性。然而,这方面从未被研究过。此外,只有少数压力检测设备经过科学验证。为此,这项工作提出了通过 ECG 和 EEG 信号对未指定和指定性别进行压力检测和多级压力分类模型。压力检测模型是通过开发和评估多个单独的分类器来实现的。另一方面,采用堆叠技术来获得多级压力分类模型。从 40 名受试者(21 名女性和 19 名男性)提取的 ECG 和 EEG 特征用于训练和验证模型。在低和高组合压力条件下,RBF-SVM 和 kNN 分别对女性(79.81%)和男性(73.77%)产生了最高的平均分类准确率。结合 ECG 和 EEG,平均分类准确率提高到至少 87.58%(男性,高压力)和高达 92.70%(女性,高压力)。对于从 ECG 和 EEG 进行多级压力分类,女性的准确率为 62.60%,男性的准确率为 71.57%。这项研究表明,性别差异影响压力检测和多级分类的分类性能。开发的模型可用于个人(通过 ECG)和临床(通过 ECG 和 EEG)压力监测,无论是否考虑性别。
生理自适应虚拟现实系统根据用户的生理信号动态调整虚拟内容,以增强交互并实现特定目标。然而,由于不同用户的认知状态可能影响多变量生理模式,自适应系统需要进行多模态评估,以研究输入生理特征与目标状态之间的关系,从而实现高效的用户建模。在这里,我们研究了一个多模态数据集(EEG、ECG 和 EDA),同时与两个不同的自适应系统交互,根据 EDA 调整环境视觉复杂性。视觉复杂性的增加导致 alpha 功率和 alpha-theta 比率的增加,反映出精神疲劳和工作量增加。同时,EDA 表现出明显的动态变化,紧张和相位成分增加。整合多模态生理测量进行适应性评估,加深了我们对系统适应对用户生理影响的理解,使我们能够解释它并改进自适应系统设计和优化算法。