Cittelly组研究了脑微环境和癌细胞中专门细胞之间的相互作用如何有助于脑转移性进展,以及女性激素环境的变化如何影响整个生命周期中这些相互作用。使用自发和实验转移模型的组合,离体模型(即器官脑切片)和体外方法,我们的目的是定义机制,通过这些机制,神经胶质细胞(星形胶质细胞,小胶质细胞)和神经元与传播的癌细胞进行沟通以促进或抑制脑转移性定殖和对治疗的反应。我们已经表明,在模仿年轻女性乳腺癌脑转移的小鼠模型中,雌激素前的雌激素水平调节了反应性星形胶质细胞的雌激素受体(ER),从而导致生长因子上调(即egf,bdnf),它以旁分泌的方式促进了癌细胞的脑转移,这些癌细胞是无反应的 -三阴性乳腺癌,TNBC)。雌激素还通过调节ER+小胶质细胞并抑制T和NK细胞的募集来促进免疫抑制性脑生态位;雌激素抑制疗法恢复了抗肿瘤免疫反应,并使脑转移对放射治疗敏感。这些研究强调了雌激素在促进TNBC年轻女性转移性进展中的重要性,但正在进行的研究表明,衰老和衰老随着衰老而发生的E2的丧失,支持脑转移性的抗内分泌ER+肿瘤,通过涉及非循环功能的ERBRANE FORKERATER IN ERRECHAICER中的ER+癌症的机制,从而支持抗内分泌的ER+肿瘤。因此,局部和全身性肿瘤微环境的激素影响对转移的进展有重大影响。有关癌症系统影响的问题/想法:
引言婴儿血管瘤通常被视为良性血管肿瘤,表现出通常可预测的生命周期,分为3个阶段(1-3)。增殖相跨越了产后生命的第一年,其特征是丰富的未成熟内皮细胞没有明确的血管结构。参与阶段开始于1岁左右,持续了3 - 5年,其特征是突出的内皮内皮衬里血管通道的前提。在涉及阶段的末尾,血管被毛细管样血管所代替,毛细血管样血管被松散的纤维状组织包围,并表示所带来的相(2,4)。已经对血管瘤内皮细胞的起源进行了充分的研究(1,5-8)。从血管瘤组织中分离出的多能干细胞概括了免疫型小鼠中的血管瘤样病变(9)。ever,促进血管瘤发展和进展的分子机制仍有待阐明(8,10)。大多数婴儿血管瘤不需要治疗并自发地退化(11)。有时,婴儿血管瘤中有10%–15%会引起显着的美容畸形,甚至会引起威胁生命的并发症(12,13)。但是,对于血管瘤的婴儿,没有均匀安全有效的治疗方法(14)。了解驱动快速生长和血管瘤的参与的精确细胞机制对于开发适当的疗法至关重要。先前的研究表明,VEGFR信号通路在调节与血管相关的血管形成和维持中起着至关重要的作用(15,16)。因此,VEGFR被视为治疗血管瘤的最重要靶标(17、18)。tanyilidiz等。报告说,血管瘤患者的血清碱性FGF2高于健康对照组,这表明FGF2是婴儿血管瘤的进口生长因子(19)。此外,Zhang等人的最新研究。表明,EGF可以显着促进血管瘤的体外增殖和运动性(20)。公共功能
背景:富马酸二甲酯 (DMF) 对参与银屑病皮肤免疫反应的不同细胞产生的促炎蛋白具有抑制作用。最近,X 射线晶体学表明,DMF 是 p90 核糖体 S6 激酶 (RSK1, 2) 的变构共价抑制剂。DMF 与 RSK2 和密切相关的丝裂原和应激激活激酶 1 (MSK1) 中的特定半胱氨酸残基结合,从而抑制进一步的下游激活。目标:本研究旨在回顾有关 DMF 对 MSK1、RSK1、2 激酶以及下游转录因子 NF- κ B/p65 和 I κ B α 在导致银屑病发病的细胞中的激活的影响的文献。我们还假设并研究了 DMF 治疗是否会抑制银屑病患者外周血单核细胞 (PBMC) 中 MSK1、RSK1、2 激酶的活化。方法:在用 DMF 治疗 90 天之前和之后,从患有严重银屑病的患者中纯化 PBMC。用茴香霉素、IL-1 β 或 EGF 刺激细胞 10 和 20 分钟。通过蛋白质印迹法分析 MSK1、RSK1、2 或 NF- κ B/p65、I κ B α 的磷酸化水平。结果:我们的案例研究显示,用 DMF 治疗可抑制患者 PBMC 中 MSK1 和 RSK1、2 激酶的活化。这支持了 DMF 是银屑病患者在 DMF 治疗期间体内的活性代谢物。结论:促炎性蛋白是通过激活 (S276) 处的 MSK1 和 NF- κ B/p65 来诱导的。细胞外信号调节激酶 (ERK1/2) 通过激活 MSK1 和 RSK1, 2 激酶来控制细胞存活。P-RSK1, 2 激活 (S536) 处的 P- κ B α 和 NF- κ B/p65。(S276) 和 (S536) 处的 NF- κ B/p65 的磷酸化控制不同的 T 细胞和树突状细胞功能。DMF 对 MSK1 和 RSK1, 2 激酶活化的抑制作用可减少银屑病患者的多种免疫反应。关键词:银屑病、DMF、MSK1、RSK1、2、IKK α、IKK β、NF- κ B/p65、I κ B α
本综述文章探讨了生长因子与骨转移之间的复杂关联,生长因子在几种恶性肿瘤(即乳腺癌、前列腺癌、肺癌和肾癌)的发展中起着至关重要的作用。我们讨论的重点是生长因子的关键受体,包括表皮生长因子受体 (EGFR)、转化生长因子-β (TGF β )、血管内皮生长因子受体 (VEGFR) 和成纤维细胞生长因子受体 (FGFR)。这些受体对于细胞活动(包括生长、分化和存活)至关重要,在癌症扩散以及肿瘤与骨环境之间的相互作用中起着重要作用。我们讨论了骨转移的潜在机制,特别强调了生长因子受体与骨微环境之间的相互作用。EGFR信号传导特别增强了破骨细胞的发展过程和溶骨性病变的形成,尤其是在乳腺癌和肺癌中。TGF β受体通过释放TGF β在溶骨性和成骨性转移中发挥作用,TGF β吸引癌细胞并促进骨重塑。这是前列腺癌扩散到骨骼的关键因素。FGFR和VEGFR分别在骨形成和肿瘤血管生成过程中的功能突出了这些相互作用的复杂性和多样性。该综述强调了针对这些受体的靶向治疗可以中断肿瘤发展和骨退化周期。治疗方法包括关注 VEGF/VEGFR、EGF/EGFR、FGF/FGFR 和 TGF β /TGF β R 通路。这些包括各种化合物,例如小分子抑制剂和单克隆抗体,它们已显示出干扰肿瘤诱导的骨骼改变的潜力。本文讨论了临床试验和临床前模型,深入了解了各种治疗方法的有效性和局限性。最后,本研究简明而全面地总结了目前关于骨转移生长因子受体的知识和治疗策略。这突出了理解肿瘤扩散到骨骼的微环境中生长因子受体信号传导的重要性,以及使用靶向疗法来增强骨转移癌症患者治疗效果的可能性。骨转移治疗的进步取决于专门针对恶性肿瘤和骨骼之间复杂关系的治疗方法的开发。
摘要 我们的研究旨在确定药物可以靶向的分子靶点和患者特定模型,以实现结直肠癌 (CRC) 的个性化医疗。在这里,我们从基因表达综合数据库 (GEO) 中获取了高通量 RNA 测序数据,登录号为 GSE205787,并使用下一代知识发现工具(如 BioJupies 和 Ingenuity 通路分析 (IPA) 软件)对其进行了分析。使用 BioJupies 工具,通过将 47 个 CRC 患者来源的球体 (CRC-CSC) 的原始计数与健康个体结肠和直肠上皮的正常球体的原始计数进行比较,可以识别差异表达基因 (DEG)。IPA 用于识别差异调节的典型通路、CRC 的上游调节剂、非方向性网络、疾病和生物功能,并使用分子预测分析 (MAP) 工具进行后续扰动分析。我们的研究表明,在 CRC-CSC 组中,多种 KEGG 通路(包括 AMPK、磷脂酶 D、MAPK 和 PI3-AKT 信号通路)均显著下调。此外,Wnt 信号和 FGFR 通路显著上调。此外,根据 Wikipathways,CRC-CSC 组中 EGF/EGFR 信号通路、MAPK 信号通路、G 蛋白信号通路和黏着斑-PI3-AKT 通路均下调。此外,根据 Reactome,CRC-CSC 组中代谢、囊泡介导的运输、RAF 信号和 G-alpha (12/13) 信号通路也下调。利用创新的药物组合方法和创新的药物输送技术,可以通过调节 FGFR、EGFR 和 AMPK 信号通路来增强 CRC 治疗,最终可能改善患者的预后。关键词:结直肠癌、癌症干细胞球体、AMP 活化蛋白激酶信号传导、成纤维细胞生长因子受体、表皮生长因子受体、BioJupies、Ingenuity 通路分析 如何引用:Rasool M、Alhassan KI、Karim S、Haque A、Mutwakil MNZ、Alharthi M、Chaudhary AG 和 Pushparaj PN。FGFR、EGFR 和 AMP 活化蛋白激酶通路在结直肠癌干细胞衍生球体中的作用:对结直肠癌治疗的意义。亚洲农业生物学杂志 2025(1):2023365。DOI:https://doi.org/10.35495/ajab.2023.365 这是一篇根据知识共享署名 4.0 许可条款分发的开放获取文章。 (https://creativecommons.org/licenses/by/4.0),允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当引用。
摘要背景结直肠癌 (CRC) 是全球癌症相关死亡的主要原因,其进展是由结直肠癌干细胞 (CR-CSC) 驱动的,而结直肠癌干细胞受内源性和微环境信号的调控。白细胞介素 (IL)-30 已被证明对 CSC 活力和肿瘤进展至关重要。它是否参与 CRC 肿瘤发生并影响临床行为尚不清楚。方法通过蛋白质印迹、免疫电子显微镜、流式细胞术、细胞活力和球体形成试验确定 CRC 干细胞和非干细胞中 IL30 的产生和功能。CRISPR/Cas9 介导的 IL30 基因缺失、RNA-Seq 以及在 NSG 小鼠中植入转染或删除 IL30 基因的 CR-CSC 可以研究 IL30 在 CRC 致癌作用中的作用。CRC 样本的生物信息学和免疫病理学强调了临床意义。结果我们证明 CR-CSC 和 CRC 细胞均表达膜锚定 IL30,该 IL30 通过 WNT5A 和 RAB33A 调节其自我更新和/或增殖和迁移,主要通过上调 STAT3 上的 CXCR4 来调节,而 IL30 基因缺失会抑制 CXCR4 以及 WNT 和 RAS 通路。IL30 基因缺失会下调蛋白酶(如 MMP2 和 MMP13)、趋化因子受体(主要是 CCR7、CCR3 和 CXCR4)以及生长和炎症介质(包括 ANGPT2、CXCL10、EPO、IGF1 和 EGF)的表达。这些因素有助于 IL30 驱动的 CR-CSC 和 CRC 细胞扩增,而选择性阻断可消除这种扩增。 IL30 基因缺失的 CR-CSC 表现出降低的致瘤性,并在 80% 的小鼠中产生生长缓慢且转移性低的肿瘤,这些小鼠的存活时间比对照组长得多。对“结肠直肠腺癌 TCGA Nature 2012”集的生物信息学和 CIBERSORTx 以及对临床 CRC 样本中 IL30 表达的形态学评估表明,CRC 和浸润白细胞中缺乏 IL30 与总生存期延长相关。结论 IL30 是一种新的 CRC 驱动因素,因为其失活会禁用致癌途径和多个自分泌环路,从而抑制 CR-CSC 的致瘤性和转移能力。CRISPR/Cas9 介导的 IL30 靶向性的发展可以改善当前的 CRC 治疗前景。
*相应的作者在:Coimbra大学药学系科伊布拉大学药学系,葡萄牙Coimbra大学,葡萄牙(F. Veiga)(F. Veiga),Requin/Laqv,药物技术小组,Coimbra University of Coimbra University of Coimbra University of Coimbra,Coimbra,Coimbra,paruga,paruga,A。c。电子邮件地址:fveiga@ci.uc.pt(F。Veiga),acsantos@ff.uc.pt(A.C。Paiva-Santos)。
牛奶脂肪球(MFGS)是自然创造力的一个非凡例子。人牛奶(HM)含有3-5%的脂肪,0.8–0.9%的蛋白质,6.9-7.2%的碳水化合物,碳水化合物计算为乳糖和0.2%矿物质成分。大多数这些营养素都在这些MFG中携带,这些MFG由富含能量的三酰基甘油(TAG)核心组成,周围是三重膜结构。膜含有极性脂质,专门的蛋白质,糖蛋白和胆固醇。这些生物活性成分中的每一个都具有重要的营养,免疫学,神经和消化功能。这些MFG旨在迅速在胃肠道上迅速释放能量,然后在肠道内持续一段时间,以便将保护性的生物活性分子传递到结肠。这些特性可能会塑造发展中胃肠道的微生物定植和先天免疫特性。牛奶中的牛奶脂肪小球来自人类和反刍动物的结构可能类似于结构,但大小,轮廓,成分和特定成分存在很大差异。有可能不仅可以以目标为导向的方式增强营养成分,以纠正婴儿中的特定缺陷,而且还可以将这些脂肪球用作需要特定治疗的婴儿的营养素。提到一些,在防御胃肠道和呼吸道感染,提高胰岛素敏感性,治疗慢性炎症和改变血浆脂质的情况下,可能有可能增强神经发育的可能性。新生儿(2024):10.5005/jp-journals-11002-0085本综述提供了MFG各个组成部分的组成,结构和生物学活动的概述。我们已经从我们自己的实验室中吸收了研究结果,并对文献进行了广泛的综述,利用PubMed,Embase和Science Direct在内的多个数据库中的关键术语进行了综述。为了避免在研究中识别偏见,关键字是轶事体验和PubMed的医学主题(网格)词库的先验名单。
高级糖基化终产物(年龄)是糖暴露引起的蛋白质或脂质的异常修饰。它们与衰老和各种退化性疾病有关,例如糖尿病,动脉粥样硬化,慢性肾脏疾病和阿尔茨海默氏症。年龄丰富的动物衍生的食物可以在烹饪过程中导致进一步的年龄形成,但目前尚不清楚饮食年龄是否有助于这些问题。年龄通常是通过代谢过程在体内产生的,尤其是高碳水化合物饮食。这种修饰会导致糖尿病并发症。年龄几乎影响体内的每个细胞和分子,在衰老和与年龄有关的疾病(如心血管疾病和阿尔茨海默氏病)中发挥作用。在糖尿病中,年龄可以诱导血管僵硬,低密度脂蛋白颗粒(LDL)的诱捕和LDL的糖化,从而促进氧化。氧化的LDL与动脉粥样硬化有关。年龄也与愤怒结合,导致血管内皮细胞中的氧化应激和炎症途径。所涉及的疾病包括阿尔茨海默氏病,心血管疾病,中风和白内障。年龄会导致肌肉功能降低,血管渗透性增加,动脉僵硬,抑制血管扩张以及增强的氧化应激。在糖尿病患者中,血红蛋白年龄水平升高,在视网膜,镜头和肾皮质中,年龄的积累随时间增加。抑制年龄形成可减少糖尿病大鼠的肾病。年龄形成可能会限制疾病进展并提供新的治疗工具。年龄具有特定的细胞受体,尤其是愤怒。激活这些受体会触发炎症反应,从而导致转录因子NF-κB的氧化应激和激活。这个过程有助于各种慢性炎症性疾病,例如动脉粥样硬化,哮喘,关节炎,心肌梗塞,肾病,视网膜病变,牙周炎和神经病。发病机理涉及NF-κB对参与炎症的基因的调节。年龄。在清除中,细胞蛋白水解产生年龄肽和“无年龄加合物”。这些被释放到血浆中并在尿液中排泄,除了无法通过基底膜的细胞外衍生的年龄蛋白。周围巨噬细胞和肝窦内皮细胞已与此过程有关。更大的年龄蛋白在排泄之前将其降解为肽和游离加合物。晚期糖基化终产物(RAGE)的受体激活触发了一系列事件,最终导致肾小球硬化和肾脏功能降低,而高级糖基化最终产物(年龄)的患者中的肾脏功能降低。年龄是由于非酶糖基化而产生的,该糖基化受到高血糖的恶化。年龄的分解产物比原始年龄蛋白更具侵略性,即使已经实现了葡萄糖控制,也可以使相关的病理永存。此外,有些年龄具有先天的催化氧化能力,而另一些年龄可以通过激活NAD(P)H氧化酶诱导氧化应激。饮食选择会影响年龄的形成。2007年的一项研究发现,NRK-49F细胞中TGF-β1,CTGF和FN mRNA的年龄显着增加了通过增强氧化应激而在NRK-49F细胞中的表达,这表明氧化应激的抑制可能是Ginkgo biloba biloba提取物在糖尿病性肾病中的作用。作者提出抗氧化剂治疗可以帮助防止年龄积累和造成损害。有效的清除对于防止年龄引起的损害是必要的,并且患有肾功能障碍的人可能需要进行肾脏移植。在糖尿病患者中经历了年龄增加的肾脏损害,肾脏损害减少了随后的尿量去除年龄,从而产生了积极的反馈回路,从而加速了损害。形成晚期糖基化末端产物(年龄)的形成可以受到某些化合物的限制,例如氨基瓜氨酸,它们与3-脱氧葡萄糖反应。年龄,导致氧化应激和炎症。乙二醛酶系统在分解年龄的前体的甲基乙醇中起作用。涉及吃未煮过的食物的原始食物主义可能会减少年龄的摄入量。n(6) - 羧甲基透析是与心血管疾病和衰老有关的年龄。研究表明,先进的糖基化终产物与各种健康问题有关,包括糖尿病,心血管疾病和衰老。晚期糖基化终产物(RAGE)的受体在这些疾病的发病机理中起作用。研究还发现,血清羧甲基赖氨酸与成年人主动脉脉冲波速度的增加有关。通过饮食变化限制年龄的摄入量可能有助于防止或减慢与年龄相关的疾病的发展。但是,需要更多的研究来充分了解年龄与人类健康之间的关系。注意:我试图在维护原始含义和上下文的同时总结文本的要点。研究人员一直在研究高级糖基化最终产品(年龄)对各种健康状况的影响。年龄是当蛋白质或脂肪与体内糖结合时形成的物质,导致氧化应激和炎症。研究表明,年龄可以导致糖尿病性心血管疾病,阿尔茨海默氏病和其他疾病。在孕妇中,年龄会影响胎儿发育,并可能与妊娠并发症的风险增加有关。晚期糖基化终产物(RAGE)的受体在该过程中起着关键作用,因为它与年龄结合并触发炎症。其他研究发现,年龄可以交叉链接蛋白并加速细胞中包含体的形成,从而导致细胞死亡。一些研究还探索了抑制愤怒的形成或活性的潜在益处,例如使用氨基瓜氨酸在中风期间预防神经毒性。此外,研究人员还研究了年龄对晶状体蛋白的影响及其在白内障发生中的作用。晚期糖基化终产物(年龄)的积累与与糖尿病有关的各种并发症,尤其是肾纤维化和氧化应激。但是,这些机制的有效性仍在争论中。总体而言,研究表明,在研究各种健康状况时,年龄是要考虑的重要因素,并且了解其机制可能会导致预防或治疗与氧化应激和炎症有关的疾病的新治疗策略。研究表明,年龄会通过触发炎症和疤痕来对肾细胞造成损害。几项研究调查了年龄在糖尿病性肾病中的作用,发现靶向年龄产生的抑制剂可以减缓疾病的进展。年龄是通过称为糖化的过程形成的,糖分子与蛋白质或脂质结合,导致氧化应激和炎症。年龄(愤怒)的受体通过触发促炎途径在介导这些作用中起关键作用。研究人员已经确定了可以抑制年龄产生的各种化合物,包括某些天然抗氧化剂和酶。此外,研究表明,通过清除剂受体介导的内吞作用或其他机制去除年龄可以帮助减轻氧化应激和炎症。总体而言,年龄,肾纤维化和氧化应激之间的关系一直是一个强烈的研究兴趣的话题,对开发与糖尿病相关并发症的新治疗方法的潜在影响。**晚期糖基化末期(年龄)**研究表明,晚期糖基化终产物(年龄)是当糖分子与体内蛋白质或脂质结合时形成的一种分子。这些年龄与包括糖尿病和阿尔茨海默氏病在内的各种疾病有关。**去除年龄**研究表明,某些酶(例如肝清除率)可以从体内清除年龄。**年龄和肾病**研究表明,口服吸收的反应性糖基化产物(糖毒素)可能有助于糖尿病性肾病。这表明年龄可能在与糖尿病相关的肾脏损伤的发展中发挥作用。**抗年龄化合物**几种化合物已被鉴定为年龄形成的潜在抑制剂,包括: *牛磺酸 *乙酰基-L-肉碱和α-脂肪酸 *阿司匹林 *白藜芦醇 * carnosine *这些化合物这些化合物可能有助于防止年龄形成并减轻其对身体的影响。**机制**研究还确定了可能有助于与年龄相关疾病发展的各种信号通路,包括: * PI3K/PKG/PKG/ERK1/2在皮质神经元中 * TRPA1-NRF信号途径中的毒素神经元中的潜在靶向介绍。**含义**年龄的积累与各种与年龄有关的疾病和状况有关。了解年龄形成和去除的机制对于为这些疾病开发有效治疗至关重要。先进的糖基化终产物(年龄)是一种多样化的化合物,它们通过人体自然和人为地通过人体的各种生化途径形成。它们是从糖,蛋白质或脂质的糖和游离胺基的羰基相互反应时会产生的,从而导致稳定,不可逆的终产物。研究表明,年龄在许多疾病和病理学中起着重要作用,包括糖尿病,癌症,心血管疾病,神经退行性疾病,甚至是Covid-19。它们被特定的细胞受体识别,这会引发炎症和氧化应激途径。尽管对年龄进行了许多研究,但它们与人类生理和病理学的复杂相互作用需要进一步研究。本综述着重于年龄受体的结构,它们在各种疾病中的作用以及导致内源性和外源性形成的过程。它还旨在将年龄分类为子组,并概述其创建所涉及的基本机制。这项研究强调了了解年龄及其受体的重要性,因为它们与广泛的疾病和疾病有关。需要进一步的研究以充分阐明年龄在人类生理和病理学中的作用。本文讨论了高级糖基化末端(年龄),这些糖基分子与蛋白质或脂质中的氨基反应时形成的化合物。作者描述了各种类型的年龄,包括葡萄糖衍生,果糖衍生和其他年龄,并为每种类型提供化学结构表示。本文还描述了年龄的受体(RAGE),该受体与年龄结合并在其细胞作用中起关键作用。图3显示了愤怒的域组织及其配体结合模式,包括与年龄相互作用的蛋白质的不同区域。最后,本文讨论了Stab1,这是另一种与年龄相互作用的蛋白质,并提供了其领域组织的图表。图4说明了Stab1和Stab2受体的结构域组织以及Stab2的Fas1结构域的结构。该图显示了Stab1和Stab2受体具有EGF样结构域重复序列,七个FAS1域,一个链路结构域,跨膜区域和一个细胞质(无序)结构域。随后,文本讨论了高级糖基化最终产物(年龄)及其受体(愤怒)对心肌收缩和线粒体功能的影响。它参考了几项研究,探讨了年龄和愤怒在心血管疾病中的作用。此外,该文本还提到了铁铁作用在糖尿病并发症中的潜在作用,以及年龄的动态作用及其与糖尿病的关系。本文还讨论了多元途径诱导的氧化和渗透应激在糖尿病性白内障病因中的协同作用。此外,它突出了选定的植物来源的多酚作为外围动脉疾病的潜在治疗剂,以及巨噬细胞免疫调节的新视野,以治愈糖尿病足溃疡。此参考资料是从2022年开始的,可以通过医学公共图书馆(PMC)免费访问。已审查了所讨论的来源,这意味着其内容已由专家彻底检查和验证。