摘要 内质网 (ER) 驻留蛋白 TANGO1 在 ER 出口位点 (ERES) 周围组装成一个环,并将 ER 腔内的前胶原与细胞质中的 COPII 机制、系绳和 ER-Golgi 中间区室 (ERGIC) 连接起来 (Raote 等人,2018)。在这里,我们提出了一种理论方法来研究 TANGO1 环组装的物理机制以及 COPII 聚合、膜张力和力如何促进前胶原输出的运输中间体的形成。我们的结果表明,TANGO1 环通过充当 linactant 来稳定新生 COPII 芽的开放颈部。然后通过两种互补机制促进这种芽伸长成与大块前胶原相称的运输中间体:(i) 通过缓解膜张力,可能是通过 TANGO1 介导的逆向 ERGIC 膜融合和 (ii) 通过施加力。总之,我们的理论方法确定了 TANGO1 驱动的前胶原输出中的关键生物物理事件。
RNA Ribonucleic Acid COPI/II Coat Protein Complex I/II DNA Deoxyribonucleic Acid ERGIC Endoplasmic Reticulum-Golgi Intermediate Compartment ER Endoplasmic Reticulum ERES Endoplasmic Reticulum Exit Site B4GalT1 (GalT) β-1,4-Galactosyltransferase 1 GalNAc-T1 (GalNT1) Polypeptide N-乙酰基半乳糖氨基转移酶1 GDP双磷酸GDP GEF GEF鸟嘌呤交换因子GFP绿色荧光蛋白GLC GLC葡萄糖GLCNAC N-乙酰葡萄糖GPCR GPCR GPCR GPCR GPCR GPCR GPCR G蛋白偶联受体GPI甘酸磷酸磷酸甘油酸GPI1aNositolgtp甘油素: (MANII)甘露糖苷酶α-级2A成员1 MHC主要的组织相容性复杂的MPR甘露糖-6-磷酸受体受体PA磷脂型磷脂酸PI磷脂酰肌醇PI4P磷脂酰辛基氨基氨基氨基氨基氨基氨基氨酸4-磷酸ps磷脂型ps磷脂型ps磷脂型ps磷酸磷脂sm磷酸磷酸盐,
a 2AP: Anti-Plasmine A 2 ACE2: Angiotensin converting enzyme 2 ADEV: extracellular vesicle derived from AGCC astrocytes: Gras with short chain Ampk: Kinase amp protein dependent Ana: anti-nuclear antibody APL: anti-phospholipid antibodies Apol1: Apolipoprotein L1 AP2: 2型AVC肺泡细胞:BHE脑部卒中:Hémato-脑脑屏障CCL:带半胱氨酸膜性cDC的趋化因子配体:常规树突状细胞:复杂呼吸链CIIII-10的子单位6 6 of Histocompatibility CMV: cytomegalovirus covars: monitoring and anticipation committee of health risks CSH: Hematopoietic stem cell Cyp: Cytochrome DDC: Dopa-Decarboxylase DFG: GLUSEURUL DDP4 GLUSEURAL FILTRATION: DIPEPTIDYL PEPTIDASE-4 E: Protein SARS-COV-2 EBNA:EPSTEIN-BARR核EBV:Epstein Barr病毒EM / SFC:肌电脑脊髓炎 / ERGIC慢性慢性疲劳综合征:内质网隔室的中间室内室内室内室内室内室内室内室,可质性网状 - 高尔基氏菌Et-1:endophinin-1 fsh:endophelin-1 fsh:follolicular刺激刺激性刺激激素刺激激素刺激激素1:1:1:fsh:FSH:FSH:fshelin-1:fsh:1:1:1:fsh:FSH: :垂体性促性腺激素GSK3β的释放激素:糖原合酶激酶3βH2 S:硫化氢具有:HCOV HCOV的高度权威:人冠状病毒IFN:Interferon
全球范围内爆发的 COVID-19 疫情在多个方面带来了前所未有的全球性挑战。大多数疫苗和药物开发都集中在刺突蛋白、病毒 RNA 聚合酶和病毒复制的主要蛋白酶上。利用生物信息学和结构建模方法,我们模拟了新型 SARS-CoV-2 包膜 (E) 蛋白的结构。该病毒的 E 蛋白与 SARS-CoV-1 的 E 蛋白具有序列相似性,并且在 N 端区域高度保守。顺便说一句,与刺突蛋白相比,E 蛋白在分离序列之间表现出较低的差异和可变性。使用同源性建模,我们发现最有利的结构可以作为传导 H + 离子的门控离子通道。结合口袋估计和与水对接,我们确定 N 端区域的 GLU 8 和 ASN 15 非常接近以形成 H 键,这通过将 E 蛋白插入 ERGIC 模拟膜得到进一步验证。此外,可以看到两个不同的“核心”结构,即疏水核心和中央核心,它们可能调节通道的开启/关闭。我们认为这是病毒离子通道活性的一种机制,在病毒感染和发病机制中起着关键作用。此外,它为疫苗开发和产生针对病毒的治疗干预措施提供了结构基础和额外途径。
小白蛋白阳性 γ -氨基丁酸 (GABA) 能中间神经元与锥体神经元之间的突触相互作用会引起皮质伽马振荡,而这种振荡在精神分裂症中是异常的。这些皮质伽马振荡可以通过伽马波段听觉稳态反应 (ASSR) 来指示,ASSR 是一种强大的脑电图 (EEG) 生物标记,越来越多地用于推动精神分裂症和其他相关脑部疾病的新疗法的开发。尽管 ASSR 很有前景,但 ASSR 的神经基础尚未被确定。本研究调查了健康受试者和精神分裂症患者 ASSR 的潜在来源。在本研究中,开发了一种非侵入性地表征源位置的新方法,并将其应用于从接受 ASSR 测试的 293 名健康受试者和 427 名精神分裂症患者获得的 EEG 记录。结果显示,在健康受试者和精神分裂症患者中,颞叶和额叶源均存在分布式网络。在这两组中,主要的 ASSR 源均位于右侧颞上皮层和眶额皮层。除了这些区域的正常活动外,精神分裂症患者的左侧颞上皮层、眶额皮层和左侧额上皮层的伽马波段 ASSR 源偶极子密度 (ITC > 0.25) 显著降低。总之,颞叶和额叶大脑区域的分布式网络支持伽马相位同步。我们证明,无法对简单的 40 Hz 刺激产生一致的生理反应反映了精神分裂症患者网络功能的混乱。未来需要进行转化研究,以更全面地了解精神分裂症患者伽马波段 ASSR 网络异常的神经机制。
摘要 皮质-基底神经节-丘脑 (CBGT) 通路如何使用多巴胺能反馈信号来修改未来决策的问题几十年来一直困扰着计算神经学家。通过回顾多巴胺能皮质纹状体可塑性的计算表示的文献,我们展示了该领域如何融合到一种规范的突触级学习算法,该算法可以优雅地捕捉 CBGT 回路的神经生理特性和强化学习期间的行为动态。不幸的是,导致这种规范算法模型的计算研究都依赖于使用抽象动作选择规则的简化电路。结果,将这种皮质纹状体可塑性算法应用于 CBGT 通路的完整模型会立即失败,因为整合(皮质纹状体回路)、动作选择(丘脑皮质环路)和学习(黑质纹状体回路)之间的时空距离意味着网络不知道应该强化哪些突触以支持之前的奖励动作。我们展示了神经生理学观察结果,特别是选定动作表征的持续激活,如何提供一种简单的方法来解决 CBGT 学习模型中的这种信用分配问题。使用完整 CBGT 回路的生物学现实脉冲模型,我们展示了该解决方案如何让网络学习选择最佳目标并在环境发生变化时重新学习动作-结果偶然性。这个简单的例子强调了如何扩展皮质纹状体可塑性的规范框架以捕捉学习和决策过程中的宏观网络动态。
背景:类黄酮菊花会在大鼠中产生快速和持久的抗焦虑和抗抑郁样作用。然而,尚不清楚低剂量和高剂量的克莱辛是否通过伽马 - 氨基丁酸亚型A(GABA A)受体产生差异性抗吸收性效应。因此,这项工作的目的是比较一项纵向研究中的低剂量和高剂量的克莱辛对抑郁症的影响。此外,将克莱辛与血清素能氟西汀和γ-氨基丁酸(GABA)Ergic Allopregnanolone进行了比较,并且还研究了慢性治疗后与GABA A受体的参与。方法:将雄性Wistar大鼠分配为五组(n = 8):媒介物,1 mg/kg chrysin,5 mg/kg chrysin,1 mg/kg氟西汀和1 mg/kg的杂种。在第一个实验中,每天注射治疗,并在治疗的0、1、14和28天和最终治疗后48小时评估对运动活性和强制游泳测试的影响。在第二个实验中,将类似的组用注射1 mg/kg picrototoxin进行28天治疗,以研究GABA A受体的作用。根据实验设计,将方差(ANOVA)测试的单向分析(ANOVA)用于统计分析,p <0.05设置为显着性的标准。结果:在这两个实验中,治疗都没有改变运动活性。然而,在强制游泳测试中,低剂量的克莱辛,异烷醇酮和氟西汀逐渐产生抗抑郁药样作用,并在治疗后48小时维持这种作用,除了低剂量的Chrysin。picrotoxin阻断了低剂量克莱辛产生的抗抑郁药样作用,但不会影响高剂量的克莱辛,异源性异烷醇或氟西汀产生的抗抑郁药。结论:低剂量和高剂量的克莱辛引起的差异抗抑郁样作用是时间依赖的。低剂量的金沙蛋白会产生快速的抗抑郁样作用,而高剂量的克莱斯蛋白会产生延迟但持续的效果,甚至在戒断后48小时。高剂量克莱辛的作用与Allopregnanolone和Fluoxetine观察到的作用相似。低chrysin的抗抑郁样作用的机制似乎是Gabaergic的,而高剂量的Chrysin的作用可能涉及其他与5-羟色胺能系统有关的神经传递和神经调节系统。
迟发性运动障碍(TD)的特征在于涉及面部,口腔和舌头的节奏,重复性,刻板印象运动的阴险发作,经常由于多巴胺受体阻滞剂(DRBA)(例如抗精神病药和抗精神病药物)(例如抗精神病药和抗精神病药)而延伸到躯干和四肢。尚不清楚TD的确切机制,但是次要上调和D2多巴胺受体的敏感性增加,也称为多巴胺超敏假说,可能在其病理生理学中起作用[2]。然而,这可能不是TD的专有原因,其他贡献者包括对基本神经节中γ氨基丁酸(GABA)效应神经元的损害,[3]纹状体中神经元因氧化应激而导致的氧化应激导致的氧化应激导致延长的抗精神病药物和抗抗抑制性型型型肌的氧化应激,并产生的神经元互为神经元。输出导致电机程序错误编码[4]。第二代抗精神病药(SGA)的终生暴露率为13.1%,第一代抗精神病药(FGAS)为32.4%[5]。此外,大约有20%至35%的人被处方抗精神病药,至少三个月遇到TD [6]。TD症状可以显着影响患者的生活质量,并导致严重病例的严重身体残疾[7]。随着SGA的扩展使用用于额外标签和标签外迹象,即使使用更少的FGA处方,TD的趋势也可能继续上升[5]。然而,这种方法可能会使潜在的精神症状恶化或反而恶化的运动障碍[8]。尽管药物开发方面取得了进步,但TD仍然是一个具有挑战性的临床问题,需要评估停止或减少违规药物剂量的选择。囊泡单胺转运蛋白2(VMAT2)主要位于神经元中,在储存单胺,例如多巴胺,5-羟色胺,去甲肾上腺素和组胺等单胺中,在突触前裂口中的囊泡中发挥作用。当抑制VMAT2时,可以防止单胺的释放,并导致可与突触后受体结合的多巴胺量减少[9]。多巴胺在其他神经途径中也起着至关重要的作用。阻塞运动回路中的多巴胺会导致突触后多巴胺受体的过敏性和多巴胺能信号的增加,从而导致与TD相关的异常运动[10]。VMAT2抑制剂,例如丙苯嗪(VBZ)和脱甲苯甲嗪(DTBZ),是迟发性运动障碍的最新颖的疗法[11-15],已得到食品和药物管理的批准[16,17]。在这里,我们对使用异常非自愿性
槟榔 (BQ) 是一种精神药物,全球有超过 6 亿人大量食用 ( 1 )。食用 BQ 的使用者报告称,他们立即经历了思维能力下降、心理过程紊乱、警惕性提高、身体放松、运动反应增强和幸福感增强 ( 2 )。BQ 的习惯性使用者承认存在物质依赖特征,包括耐受性、渴求和寻药行为以及戒断症状 ( 3 )。许多精神活性物质在急性给药过程中会作用于大脑的奖赏通路,这种影响在习惯性使用者身上可能有所不同 ( 4 )。基底神经节、扩展的杏仁核和前额叶皮质与成瘾物质的初始阶段、发展和习惯性使用有关 ( 5 )。在初始阶段,个体会参与自愿的物质使用行为 ( 6 )。此类行为可能伴有强烈的感觉,一旦有过,可能会增强药物的反复使用(7)。槟榔碱是 BQ 中的主要活性成分(8)。它通过与腹侧被盖区 (VTA) DA 神经元上 GABA 末端的 M5 毒蕈碱乙酰胆碱受体结合,促进多巴胺 (DA) 的释放(9)(10)。中脑皮质边缘系统 [VTA、伏隔核 (NAc) 和前额皮质 (PFC)] 的一系列机制增加 VTA 和其他投射区域的 DA 浓度,这被认为是药物奖励的主要途径(11)。此外,胆碱能和抑制性 GABA 能输入极大地调节中脑边缘多巴胺能神经元 (12),这些神经元在处理奖励、强化学习 (13) 和依赖性 (14) 方面发挥着重要作用。此外,研究发现,急性服用精神活性药物会激活与中脑皮质边缘神经网络相连的大脑区域,而这些区域与药物奖励有关 (15)。因此,药物成瘾者重复使用精神活性物质的需要和强迫性可以通过大脑中的奖励和习惯通路的参与来解释 (5)。与急性接触药物时 NAc 中多巴胺能传递增加相比,长期服用药物与较少的奖励效应有关,这是由于 DA 水平降低所致 (16、17)。众所周知,长期吸毒会削弱大脑控制吸毒行为的能力,从而增加成瘾性强迫行为的风险 ( 6 )。起初,人们认为失去对吸毒的控制源于大脑皮层下奖赏区域受损。然而,成瘾研究的结果表明,PFC 在调节边缘奖赏区域和执行功能方面发挥着关键作用。PFC 受损与复发的吸毒成瘾者中观察到的抑制控制丧失有关 ( 18 )。静息状态功能连接(FC)研究发现,大多数成瘾药物会导致奖赏、情绪和
